Dual-media laser system: Nitrogen vacancy diamond and red semiconductor laser

Diamond is a potential host material for laser applications due to its exceptional thermal properties, ultrawide bandgap, and color centers, which promise gain across the visible spectrum. More recently, coherent laser methods offer improved sensitivity for magnetometry. However, diamond fabrication...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2024-09, Vol.10 (39), p.eadj3933
Hauptverfasser: Lindner, Lukas, Hahl, Felix A, Luo, Tingpeng, Antonio, Guillermo Nava, Vidal, Xavier, Rattunde, Marcel, Ohshima, Takeshi, Sacher, Joachim, Sun, Qiang, Capelli, Marco, Gibson, Brant C, Greentree, Andrew D, Quay, Rüdiger, Jeske, Jan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diamond is a potential host material for laser applications due to its exceptional thermal properties, ultrawide bandgap, and color centers, which promise gain across the visible spectrum. More recently, coherent laser methods offer improved sensitivity for magnetometry. However, diamond fabrication is difficult in comparison to other crystalline matrices, and many optical loss channels are not yet understood. Here, we demonstrate a continuous-wave laser threshold as a function of the pump intensity on nitrogen-vacancy (NV) color centers. To achieve this, we constructed a laser cavity with both an NV diamond medium and an intracavity antireflection-coated diode laser. This dual-medium approach compensates intrinsic losses of the cavity by providing a fixed additional gain below threshold of the diode laser. We observe a continuous-wave laser threshold of the laser system and linewidth narrowing with increasing green pump power on the NV centers. Our results are a major development toward coherent approaches to magnetometry.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.adj3933