CONSTITUTIVE MODEL CONSTANTS FOR LOW CARBON STEELS FROM TENSION AND TORSION DATA
Low carbon C1010 steel is characterized under tension and torsion to determine Johnson-Cook (J-C) strength model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact on structural components made of this material. J-C model constant...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low carbon C1010 steel is characterized under tension and torsion to determine Johnson-Cook (J-C) strength model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact on structural components made of this material. J-C model constants (A, B, n, C, and m) for the alloy are determined from tension and torsion stress-strain data. Reference tension tests are performed at a strain rate of ~1/s at room temperature. Tests at high strain rates are performed at temperatures to 750 deg C. Torsion tests at quasi-static and high strain rates are performed at both room and high temperatures. Equivalent plastic tensile stress-strain data are obtained from torsion data using von Mises flow rule and compared directly to measured tensile data. J-C strength model constants are determined from these data. Similar low carbon steels (1006, 1008, and 1020) have their J-C constants compared. |
---|---|
ISSN: | 0094-243X |
DOI: | 10.1063/1.2833171 |