TexSe1-x Shortwave Infrared Photodiode Arrays with Monolithic Integration

TexSe1-x shortwave infrared (SWIR) photodetectors show promise for monolithic integration with readout integrated circuits (ROIC), making it a potential alternative to conventional expensive SWIR photodetectors. However, challenges such as a high dark current density and insufficient detection perfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-10, Vol.24 (40), p.12620
Hauptverfasser: Peng, Meng, He, Yuming, Hu, Yuxuan, Liu, Zunyu, Chen, Xinyi, Liu, Zhiqiang, Yang, Junrui, Chen, Maohua, Liu, Weijie, Wu, Feng, Li, Luying, Dai, Jiangnan, Chen, Changqing, He, Jungang, Hu, Long, Chen, Chao, Tang, Jiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TexSe1-x shortwave infrared (SWIR) photodetectors show promise for monolithic integration with readout integrated circuits (ROIC), making it a potential alternative to conventional expensive SWIR photodetectors. However, challenges such as a high dark current density and insufficient detection performance hinder their application in large-scale monolithic integration. Herein, we develop a ZnO/TexSe1-x heterojunction photodiode and synergistically address the interfacial elemental diffusion and dangling bonds via inserting a well-selected 0.3 nm amorphous TeO2 interfacial layer. The optimized device achieves a reduced dark current density of -3.5 × 10-5 A cm-2 at -10 mV, a broad response from 300 to 1700 nm, a room-temperature detectivity exceeding 2.03 × 1011 Jones, and a 3 dB bandwidth of 173 kHz. Furthermore, for the first time, we monolithically integrate the TexSe1-x photodiodes on ROIC (64 × 64 pixels) with the largest-scale array among all TexSe1-x-based detectors. Finally, we demonstrate its applications in transmission imaging and substance identification.TexSe1-x shortwave infrared (SWIR) photodetectors show promise for monolithic integration with readout integrated circuits (ROIC), making it a potential alternative to conventional expensive SWIR photodetectors. However, challenges such as a high dark current density and insufficient detection performance hinder their application in large-scale monolithic integration. Herein, we develop a ZnO/TexSe1-x heterojunction photodiode and synergistically address the interfacial elemental diffusion and dangling bonds via inserting a well-selected 0.3 nm amorphous TeO2 interfacial layer. The optimized device achieves a reduced dark current density of -3.5 × 10-5 A cm-2 at -10 mV, a broad response from 300 to 1700 nm, a room-temperature detectivity exceeding 2.03 × 1011 Jones, and a 3 dB bandwidth of 173 kHz. Furthermore, for the first time, we monolithically integrate the TexSe1-x photodiodes on ROIC (64 × 64 pixels) with the largest-scale array among all TexSe1-x-based detectors. Finally, we demonstrate its applications in transmission imaging and substance identification.
ISSN:1530-6992
1530-6992
DOI:10.1021/acs.nanolett.4c03728