Green synthesis of cerium oxide nanoparticles usingTribulus terrestris: characterization and evaluation of antioxidant, anti-inflammatory and antibacterial efficacy against wound isolates
Multi-drug resistance (MDR) infections are a significant global challenge, necessitating innovative and eco-friendly approaches for developing effective antimicrobial agents. This study focuses on the synthesis, characterization, and evaluation of cerium oxide nanoparticles (CeO2NPs) for their antio...
Gespeichert in:
Veröffentlicht in: | Biomedical physics & engineering express 2024-10, Vol.10 (6) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multi-drug resistance (MDR) infections are a significant global challenge, necessitating innovative and eco-friendly approaches for developing effective antimicrobial agents. This study focuses on the synthesis, characterization, and evaluation of cerium oxide nanoparticles (CeO2NPs) for their antioxidant, anti-inflammatory, and antibacterial properties. The CeO2NPs were synthesized using aTribulus terrestrisaqueous extract through an environmentally friendly process. Characterization techniques included UV-visible spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), x-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive x-ray (EDX) analysis. The UV-vis spectroscopy shows the presence of peak at 320 nm which confirms the formation of CeO2NPs. The FT-IR analysis of the CeO2NPs revealed several distinct functional groups, with peak values at 3287, 2920, 2340, 1640, 1538, 1066, 714, and 574 cm-1. These peaks correspond to specific functional groups, including C-H stretching in alkynes and alkanes, C=C=O, C=C, alkanes, C-O-C, C-Cl, and C-Br, indicating the presence of diverse chemical bonds within the CeO2NPs. XRD revealed that the nanoparticles were highly crystalline with a face-centered cubic structure, and SEM images showed irregularly shaped, agglomerated particles ranging from 100-150 nm. In terms of biological activity, the synthesized CeO2NPs demonstrated significant antioxidant and anti-inflammatory properties. The nanoparticles exhibited 82.54% antioxidant activity at 100 μg ml-1, closely matching the 83.1% activity of ascorbic acid. Additionally, the CeO2NPs showed 65.2% anti-inflammatory activity at the same concentration, compared to 70.1% for a standard drug. Antibacterial testing revealed that the CeO2NPs were particularly effective against multi-drug resistant strains, includingPseudomonas aeruginosa,Enterococcus faecalis, and MRSA, with moderate activity againstKlebsiella pneumoniae. These findings suggest that CeO2NPs synthesized viaT. terrestrishave strong potential as antimicrobial agents in addressing MDR infections.Multi-drug resistance (MDR) infections are a significant global challenge, necessitating innovative and eco-friendly approaches for developing effective antimicrobial agents. This study focuses on the synthesis, characterization, and evaluation of cerium oxide nanoparticles (CeO2NPs) for their antioxidant, anti-inflammatory, and antibacterial properties. The CeO2NPs were synthesized using a |
---|---|
ISSN: | 2057-1976 2057-1976 |
DOI: | 10.1088/2057-1976/ad7f59 |