Allylic Epoxides Increase the Strain Energy of Cyclic Olefin Monomers for Ring‐Opening Metathesis Polymerization
Ring‐opening metathesis polymerization (ROMP) is an effective method for synthesizing functional polymers, but since the technique typically relies on high ring strain cyclic olefins, the most common monomers are norbornene derivatives. The reliance on one class of monomer limits the obtainable prop...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2025-01, Vol.64 (2), p.e202414872-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e202414872 |
container_title | Angewandte Chemie International Edition |
container_volume | 64 |
creator | Sylvester, Kyle R. Zovinka, Jessa R. Milrod, Maya L. Stubin, Alexandra K. Rojas‐Merchan, Angela Alexander, Kayla Elling, Benjamin R. |
description | Ring‐opening metathesis polymerization (ROMP) is an effective method for synthesizing functional polymers, but since the technique typically relies on high ring strain cyclic olefins, the most common monomers are norbornene derivatives. The reliance on one class of monomer limits the obtainable properties of ROMP polymers. In this work, we investigate new bicyclic monomers synthesized via epoxidation of commercial dienes. DFT estimates of these monomers’ ring strains suggests a significant increase in strain for cyclic olefins containing allylic epoxides. We found that the eight‐membered (3,4‐COO) and five‐membered (CPO) cyclic olefins were particularly effective for ROMP. CPO was of especially intriguing due to its excellent polymerizability when compared to the limited reactivity of other five‐membered rings. Unlike polynorbornenes, the resulting polymers of both monomers displayed glass transition temperatures well below room temperature. Interestingly, poly(3,4‐COO) showed both high stereo‐ and regioregularity while poly(CPO) showed little regularity. Both polymers could be readily modified via post‐polymerization ring‐opening of the reactive allylic epoxides. With a high epoxide density in poly(CPO), CPO is an exciting new ROMP monomer that is easily synthesized, can be polymerized to high conversion at room temperature, and may be facilely modified to yield a wide range of functional materials.
Cyclic olefins with allylic epoxides were found to have increased strain energies relative to their monocyclic counterparts, allowing for rapid ring‐opening metathesis polymerization at room temperature. The epoxides in the polymer backbone allowed for facile modification via nucleophilic ring‐opening. |
doi_str_mv | 10.1002/anie.202414872 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3109972690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153541560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2582-64b319e283dd2547f92a1118095fa245465cba5ae19987ee8b0a2452073799103</originalsourceid><addsrcrecordid>eNqF0ctOGzEUBmALgYBStiyRJTZsJvgyHtvLKAoQKTRVL-uRMzkDRo6d2hPBsOIR-ox9knoUSqVuuvLR0edfln-EzigZUULYlfEWRoywkpZKsj10TAWjBZeS7-e55LyQStAj9CGlx-yVItUhOuKaM6JldYzi2Lne2QZPN-HZriDhmW8imAS4ewD8tYvGejz1EO97HFo86ZtBLxy0eX8XfFhDTLgNEX-x_v7X68_FBnye8B10Jkckm_Dn4PrM7IvpbPAf0UFrXILTt_MEfb-efpvcFvPFzWwynhcNE4oVVbnkVANTfLViopStZoZSqogWrWGlKCvRLI0wQLVWEkAtybBmRHKpNSX8BF3ucjcx_NhC6uq1TQ04ZzyEbao5JVpLVumBXvxDH8M2-vy6rAQXJRXVoEY71cSQUoS23kS7NrGvKamHNuqhjfq9jXzh_C12u1zD6p3_-f4M9A48WQf9f-Lq8afZ9G_4b0GOlmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153541560</pqid></control><display><type>article</type><title>Allylic Epoxides Increase the Strain Energy of Cyclic Olefin Monomers for Ring‐Opening Metathesis Polymerization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sylvester, Kyle R. ; Zovinka, Jessa R. ; Milrod, Maya L. ; Stubin, Alexandra K. ; Rojas‐Merchan, Angela ; Alexander, Kayla ; Elling, Benjamin R.</creator><creatorcontrib>Sylvester, Kyle R. ; Zovinka, Jessa R. ; Milrod, Maya L. ; Stubin, Alexandra K. ; Rojas‐Merchan, Angela ; Alexander, Kayla ; Elling, Benjamin R.</creatorcontrib><description>Ring‐opening metathesis polymerization (ROMP) is an effective method for synthesizing functional polymers, but since the technique typically relies on high ring strain cyclic olefins, the most common monomers are norbornene derivatives. The reliance on one class of monomer limits the obtainable properties of ROMP polymers. In this work, we investigate new bicyclic monomers synthesized via epoxidation of commercial dienes. DFT estimates of these monomers’ ring strains suggests a significant increase in strain for cyclic olefins containing allylic epoxides. We found that the eight‐membered (3,4‐COO) and five‐membered (CPO) cyclic olefins were particularly effective for ROMP. CPO was of especially intriguing due to its excellent polymerizability when compared to the limited reactivity of other five‐membered rings. Unlike polynorbornenes, the resulting polymers of both monomers displayed glass transition temperatures well below room temperature. Interestingly, poly(3,4‐COO) showed both high stereo‐ and regioregularity while poly(CPO) showed little regularity. Both polymers could be readily modified via post‐polymerization ring‐opening of the reactive allylic epoxides. With a high epoxide density in poly(CPO), CPO is an exciting new ROMP monomer that is easily synthesized, can be polymerized to high conversion at room temperature, and may be facilely modified to yield a wide range of functional materials.
Cyclic olefins with allylic epoxides were found to have increased strain energies relative to their monocyclic counterparts, allowing for rapid ring‐opening metathesis polymerization at room temperature. The epoxides in the polymer backbone allowed for facile modification via nucleophilic ring‐opening.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202414872</identifier><identifier>PMID: 39320976</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alkenes ; Dienes ; Epoxidation ; epoxide ; Epoxides ; Functional materials ; Glass transition temperature ; Metathesis ; Monomers ; Polymerization ; Polymers ; Polynorbornene ; post-polymerization modification ; ring strain ; ROMP ; Room temperature ; Strain energy ; Synthesis ; Transition temperatures</subject><ispartof>Angewandte Chemie International Edition, 2025-01, Vol.64 (2), p.e202414872-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><rights>2025 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2582-64b319e283dd2547f92a1118095fa245465cba5ae19987ee8b0a2452073799103</cites><orcidid>0000-0002-8967-7995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202414872$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202414872$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39320976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sylvester, Kyle R.</creatorcontrib><creatorcontrib>Zovinka, Jessa R.</creatorcontrib><creatorcontrib>Milrod, Maya L.</creatorcontrib><creatorcontrib>Stubin, Alexandra K.</creatorcontrib><creatorcontrib>Rojas‐Merchan, Angela</creatorcontrib><creatorcontrib>Alexander, Kayla</creatorcontrib><creatorcontrib>Elling, Benjamin R.</creatorcontrib><title>Allylic Epoxides Increase the Strain Energy of Cyclic Olefin Monomers for Ring‐Opening Metathesis Polymerization</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Ring‐opening metathesis polymerization (ROMP) is an effective method for synthesizing functional polymers, but since the technique typically relies on high ring strain cyclic olefins, the most common monomers are norbornene derivatives. The reliance on one class of monomer limits the obtainable properties of ROMP polymers. In this work, we investigate new bicyclic monomers synthesized via epoxidation of commercial dienes. DFT estimates of these monomers’ ring strains suggests a significant increase in strain for cyclic olefins containing allylic epoxides. We found that the eight‐membered (3,4‐COO) and five‐membered (CPO) cyclic olefins were particularly effective for ROMP. CPO was of especially intriguing due to its excellent polymerizability when compared to the limited reactivity of other five‐membered rings. Unlike polynorbornenes, the resulting polymers of both monomers displayed glass transition temperatures well below room temperature. Interestingly, poly(3,4‐COO) showed both high stereo‐ and regioregularity while poly(CPO) showed little regularity. Both polymers could be readily modified via post‐polymerization ring‐opening of the reactive allylic epoxides. With a high epoxide density in poly(CPO), CPO is an exciting new ROMP monomer that is easily synthesized, can be polymerized to high conversion at room temperature, and may be facilely modified to yield a wide range of functional materials.
Cyclic olefins with allylic epoxides were found to have increased strain energies relative to their monocyclic counterparts, allowing for rapid ring‐opening metathesis polymerization at room temperature. The epoxides in the polymer backbone allowed for facile modification via nucleophilic ring‐opening.</description><subject>Alkenes</subject><subject>Dienes</subject><subject>Epoxidation</subject><subject>epoxide</subject><subject>Epoxides</subject><subject>Functional materials</subject><subject>Glass transition temperature</subject><subject>Metathesis</subject><subject>Monomers</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polynorbornene</subject><subject>post-polymerization modification</subject><subject>ring strain</subject><subject>ROMP</subject><subject>Room temperature</subject><subject>Strain energy</subject><subject>Synthesis</subject><subject>Transition temperatures</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqF0ctOGzEUBmALgYBStiyRJTZsJvgyHtvLKAoQKTRVL-uRMzkDRo6d2hPBsOIR-ox9knoUSqVuuvLR0edfln-EzigZUULYlfEWRoywkpZKsj10TAWjBZeS7-e55LyQStAj9CGlx-yVItUhOuKaM6JldYzi2Lne2QZPN-HZriDhmW8imAS4ewD8tYvGejz1EO97HFo86ZtBLxy0eX8XfFhDTLgNEX-x_v7X68_FBnye8B10Jkckm_Dn4PrM7IvpbPAf0UFrXILTt_MEfb-efpvcFvPFzWwynhcNE4oVVbnkVANTfLViopStZoZSqogWrWGlKCvRLI0wQLVWEkAtybBmRHKpNSX8BF3ucjcx_NhC6uq1TQ04ZzyEbao5JVpLVumBXvxDH8M2-vy6rAQXJRXVoEY71cSQUoS23kS7NrGvKamHNuqhjfq9jXzh_C12u1zD6p3_-f4M9A48WQf9f-Lq8afZ9G_4b0GOlmo</recordid><startdate>20250110</startdate><enddate>20250110</enddate><creator>Sylvester, Kyle R.</creator><creator>Zovinka, Jessa R.</creator><creator>Milrod, Maya L.</creator><creator>Stubin, Alexandra K.</creator><creator>Rojas‐Merchan, Angela</creator><creator>Alexander, Kayla</creator><creator>Elling, Benjamin R.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8967-7995</orcidid></search><sort><creationdate>20250110</creationdate><title>Allylic Epoxides Increase the Strain Energy of Cyclic Olefin Monomers for Ring‐Opening Metathesis Polymerization</title><author>Sylvester, Kyle R. ; Zovinka, Jessa R. ; Milrod, Maya L. ; Stubin, Alexandra K. ; Rojas‐Merchan, Angela ; Alexander, Kayla ; Elling, Benjamin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2582-64b319e283dd2547f92a1118095fa245465cba5ae19987ee8b0a2452073799103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Alkenes</topic><topic>Dienes</topic><topic>Epoxidation</topic><topic>epoxide</topic><topic>Epoxides</topic><topic>Functional materials</topic><topic>Glass transition temperature</topic><topic>Metathesis</topic><topic>Monomers</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polynorbornene</topic><topic>post-polymerization modification</topic><topic>ring strain</topic><topic>ROMP</topic><topic>Room temperature</topic><topic>Strain energy</topic><topic>Synthesis</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sylvester, Kyle R.</creatorcontrib><creatorcontrib>Zovinka, Jessa R.</creatorcontrib><creatorcontrib>Milrod, Maya L.</creatorcontrib><creatorcontrib>Stubin, Alexandra K.</creatorcontrib><creatorcontrib>Rojas‐Merchan, Angela</creatorcontrib><creatorcontrib>Alexander, Kayla</creatorcontrib><creatorcontrib>Elling, Benjamin R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sylvester, Kyle R.</au><au>Zovinka, Jessa R.</au><au>Milrod, Maya L.</au><au>Stubin, Alexandra K.</au><au>Rojas‐Merchan, Angela</au><au>Alexander, Kayla</au><au>Elling, Benjamin R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allylic Epoxides Increase the Strain Energy of Cyclic Olefin Monomers for Ring‐Opening Metathesis Polymerization</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2025-01-10</date><risdate>2025</risdate><volume>64</volume><issue>2</issue><spage>e202414872</spage><epage>n/a</epage><pages>e202414872-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Ring‐opening metathesis polymerization (ROMP) is an effective method for synthesizing functional polymers, but since the technique typically relies on high ring strain cyclic olefins, the most common monomers are norbornene derivatives. The reliance on one class of monomer limits the obtainable properties of ROMP polymers. In this work, we investigate new bicyclic monomers synthesized via epoxidation of commercial dienes. DFT estimates of these monomers’ ring strains suggests a significant increase in strain for cyclic olefins containing allylic epoxides. We found that the eight‐membered (3,4‐COO) and five‐membered (CPO) cyclic olefins were particularly effective for ROMP. CPO was of especially intriguing due to its excellent polymerizability when compared to the limited reactivity of other five‐membered rings. Unlike polynorbornenes, the resulting polymers of both monomers displayed glass transition temperatures well below room temperature. Interestingly, poly(3,4‐COO) showed both high stereo‐ and regioregularity while poly(CPO) showed little regularity. Both polymers could be readily modified via post‐polymerization ring‐opening of the reactive allylic epoxides. With a high epoxide density in poly(CPO), CPO is an exciting new ROMP monomer that is easily synthesized, can be polymerized to high conversion at room temperature, and may be facilely modified to yield a wide range of functional materials.
Cyclic olefins with allylic epoxides were found to have increased strain energies relative to their monocyclic counterparts, allowing for rapid ring‐opening metathesis polymerization at room temperature. The epoxides in the polymer backbone allowed for facile modification via nucleophilic ring‐opening.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39320976</pmid><doi>10.1002/anie.202414872</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8967-7995</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2025-01, Vol.64 (2), p.e202414872-n/a |
issn | 1433-7851 1521-3773 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_3109972690 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Alkenes Dienes Epoxidation epoxide Epoxides Functional materials Glass transition temperature Metathesis Monomers Polymerization Polymers Polynorbornene post-polymerization modification ring strain ROMP Room temperature Strain energy Synthesis Transition temperatures |
title | Allylic Epoxides Increase the Strain Energy of Cyclic Olefin Monomers for Ring‐Opening Metathesis Polymerization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allylic%20Epoxides%20Increase%20the%20Strain%20Energy%20of%20Cyclic%20Olefin%20Monomers%20for%20Ring%E2%80%90Opening%20Metathesis%20Polymerization&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Sylvester,%20Kyle%20R.&rft.date=2025-01-10&rft.volume=64&rft.issue=2&rft.spage=e202414872&rft.epage=n/a&rft.pages=e202414872-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202414872&rft_dat=%3Cproquest_cross%3E3153541560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153541560&rft_id=info:pmid/39320976&rfr_iscdi=true |