Allylic Epoxides Increase the Strain Energy of Cyclic Olefin Monomers for Ring‐Opening Metathesis Polymerization

Ring‐opening metathesis polymerization (ROMP) is an effective method for synthesizing functional polymers, but since the technique typically relies on high ring strain cyclic olefins, the most common monomers are norbornene derivatives. The reliance on one class of monomer limits the obtainable prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2025-01, Vol.64 (2), p.e202414872-n/a
Hauptverfasser: Sylvester, Kyle R., Zovinka, Jessa R., Milrod, Maya L., Stubin, Alexandra K., Rojas‐Merchan, Angela, Alexander, Kayla, Elling, Benjamin R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ring‐opening metathesis polymerization (ROMP) is an effective method for synthesizing functional polymers, but since the technique typically relies on high ring strain cyclic olefins, the most common monomers are norbornene derivatives. The reliance on one class of monomer limits the obtainable properties of ROMP polymers. In this work, we investigate new bicyclic monomers synthesized via epoxidation of commercial dienes. DFT estimates of these monomers’ ring strains suggests a significant increase in strain for cyclic olefins containing allylic epoxides. We found that the eight‐membered (3,4‐COO) and five‐membered (CPO) cyclic olefins were particularly effective for ROMP. CPO was of especially intriguing due to its excellent polymerizability when compared to the limited reactivity of other five‐membered rings. Unlike polynorbornenes, the resulting polymers of both monomers displayed glass transition temperatures well below room temperature. Interestingly, poly(3,4‐COO) showed both high stereo‐ and regioregularity while poly(CPO) showed little regularity. Both polymers could be readily modified via post‐polymerization ring‐opening of the reactive allylic epoxides. With a high epoxide density in poly(CPO), CPO is an exciting new ROMP monomer that is easily synthesized, can be polymerized to high conversion at room temperature, and may be facilely modified to yield a wide range of functional materials. Cyclic olefins with allylic epoxides were found to have increased strain energies relative to their monocyclic counterparts, allowing for rapid ring‐opening metathesis polymerization at room temperature. The epoxides in the polymer backbone allowed for facile modification via nucleophilic ring‐opening.
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202414872