Conditional pre-charge techniques for power-efficient dual-edge clocking
A new dual edge-triggered flip-flop that saves power by inhibiting transitions of the nodes that are not used to change the state is presented. The proposed flip-flop is 12% faster with 10% lower Energy-Delay Product for 50% data activity, as compared to the previously published dual edge-triggered...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new dual edge-triggered flip-flop that saves power by inhibiting transitions of the nodes that are not used to change the state is presented. The proposed flip-flop is 12% faster with 10% lower Energy-Delay Product for 50% data activity, as compared to the previously published dual edge-triggered storage elements. This was confirmed by simulation using 0.18um process, 1.8V power supply, and clock frequency of 250MHz. This flip-flop is particularly suitable for low-power applications. |
---|---|
DOI: | 10.1145/566408.566424 |