Translocon Subunits of the COP9 Signalosome Complex Are a Central Hub for Regulating Multiple Photoresponsive Processes and Autophagic Flux in Magnaporthe oryzae

Photodependent processes, including circadian rhythm, autophagy, ubiquitination, neddylation/deneddylation, and metabolite biosynthesis, profoundly influence microbial pathogenesis. Although a photomorphogenesis signalosome (COP9/CSN) has been identified, the mechanism by which this large complex co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2024-10, Vol.72 (40), p.22015-22034
Hauptverfasser: Lin, Lili, Guo, Hengyuan, Batool, Wajjiha, Lin, Lianyu, Cao, Jiaying, An, Qiuli, Aliyu, Sami Rukaiya, Bao, Jiandong, Wang, Zonghua, Norvienyeku, Justice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photodependent processes, including circadian rhythm, autophagy, ubiquitination, neddylation/deneddylation, and metabolite biosynthesis, profoundly influence microbial pathogenesis. Although a photomorphogenesis signalosome (COP9/CSN) has been identified, the mechanism by which this large complex contributes to the pathophysiological processes in filamentous fungi remains unclear. Here, we identified eight CSN complex subunits in the rice blast fungus Magnaporthe oryzae and functionally characterized the translocon subunits containing a nuclear export or localization signal (NES/NLS). Targeted gene replacement of these CSN subunits, including MoCSN3, MoCSN5, MoCSN6, MoCSN7, and MoCSN12, attenuated vegetative growth and conidiation and rendered the deletion strains nonpathogenic. MoCSN7 deletion significantly suppressed arachidonic acid catabolism, and compromised cell wall integrity in M. oryzae. Surprisingly, we also discovered that MoCSN subunits, particularly MoCsn7, are required for the cAMP-dependent regulation of autophagic flux. Therefore, MoCSN significantly contributes to morphological, physiological, and pathogenic differentiation in M. oryzae by fostering cross-talk between multiple pathways.
ISSN:0021-8561
1520-5118
1520-5118
DOI:10.1021/acs.jafc.4c03163