Photothermal and enhanced chemodynamic reinforced anti-tumor therapy based on PDA@POM nanocomposites
[Display omitted] Chemodynamic therapy (CDT) and photothermal therapy (PTT) have both demonstrated considerable efficacy in the tumor treatment individually, owing to their non-invasive nature and excellent selectivity. However, due to the propensity of tumors for metastasis and recurrence, a singul...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2025-01, Vol.678 (Pt C), p.796-803 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Chemodynamic therapy (CDT) and photothermal therapy (PTT) have both demonstrated considerable efficacy in the tumor treatment individually, owing to their non-invasive nature and excellent selectivity. However, due to the propensity of tumors for metastasis and recurrence, a singular therapeutic approach falls short of achieving optimal treatment outcomes. Polydopamine (PDA) has excellent photothermal conversion ability and polyoxometalates (POMs) possess diverse enzymatic activities. Here, we synthesized PDA@POM nanospheres comprising polydopamine-coated Tungsten-based polyoxometalate (W-POM). These nanospheres leverage dual enzymatic activities that synergistically enhance both chemodynamic and photothermal therapies for tumor treatment. The PDA-mediated PTT effect enables precise tumor cell destruction, while the W-POM nanozymes catalyzes the generation of highly toxic reactive oxygen species (ROS) from hydrogen peroxide within tumor cells through a Fenton-like reaction, which mitigates tumor hypoxia and induces tumor cell death. This synergistic photothermal catalytic therapy shows enhanced efficacy in tumor suppression, providing a promising new approach for tumor treatment. |
---|---|
ISSN: | 0021-9797 1095-7103 1095-7103 |
DOI: | 10.1016/j.jcis.2024.09.160 |