Bayes beyond the predictive distribution

Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Behavioral and brain sciences 2024-09, Vol.47, p.e166, Article e166
Hauptverfasser: Székely, Anna, Orbán, Gergő
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e166
container_title The Behavioral and brain sciences
container_volume 47
creator Székely, Anna
Orbán, Gergő
description Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach beyond a predictive distribution-based comparison, offering new perspectives to evaluate the advantages of these modeling paradigms.
doi_str_mv 10.1017/S0140525X24000086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3108391564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0140525X24000086</cupid><sourcerecordid>3108391564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-8e8cc876266c244a5156c72b755ffa1419632493085c9e7f26375f11a9bbcb4b3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlZ_gBcpeOllNZPPzVGLX1DwoIK3JclmNaW7W5Ndof_e1FYFxbnMYZ55ZngROgZ8Bhjk-QMGhjnhz4ThVLnYQUNgQmWQE76Lhutxtp4P0EGM84RwxtU-GlBFATjIIZpc6pWLY-NWbVOOu1c3XgZXetv5dzcufeyCN33n2-YQ7VV6Ed3Rto_Q0_XV4_Q2m93f3E0vZpklnHdZ7nJrcymIEJYwpjlwYSUxkvOq0sBACUqYojjnVjlZEUElrwC0MsYaZugITTbeZWjfehe7ovbRusVCN67tY0EB51QlK0vo6S903vahSd99UlhgSWiiYEPZ0MYYXFUsg691WBWAi3WMxZ8Y087J1tyb2pXfG1-5JYBupbo2wZcv7uf2_9oPK0N5fQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108060723</pqid></control><display><type>article</type><title>Bayes beyond the predictive distribution</title><source>MEDLINE</source><source>Cambridge University Press Journals Complete</source><creator>Székely, Anna ; Orbán, Gergő</creator><creatorcontrib>Székely, Anna ; Orbán, Gergő</creatorcontrib><description>Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach beyond a predictive distribution-based comparison, offering new perspectives to evaluate the advantages of these modeling paradigms.</description><identifier>ISSN: 0140-525X</identifier><identifier>ISSN: 1469-1825</identifier><identifier>EISSN: 1469-1825</identifier><identifier>DOI: 10.1017/S0140525X24000086</identifier><identifier>PMID: 39311517</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Bayes Theorem ; Bayesian analysis ; Cognition ; Cognition - physiology ; Humans ; Hypotheses ; Learning - physiology ; Mathematical models ; Models, Psychological ; Open Peer Commentary</subject><ispartof>The Behavioral and brain sciences, 2024-09, Vol.47, p.e166, Article e166</ispartof><rights>Copyright © The Author(s), 2024. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-8e8cc876266c244a5156c72b755ffa1419632493085c9e7f26375f11a9bbcb4b3</cites><orcidid>0009-0000-8654-7733 ; 0000-0002-2406-5912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0140525X24000086/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39311517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Székely, Anna</creatorcontrib><creatorcontrib>Orbán, Gergő</creatorcontrib><title>Bayes beyond the predictive distribution</title><title>The Behavioral and brain sciences</title><addtitle>Behav Brain Sci</addtitle><description>Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach beyond a predictive distribution-based comparison, offering new perspectives to evaluate the advantages of these modeling paradigms.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Cognition</subject><subject>Cognition - physiology</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Learning - physiology</subject><subject>Mathematical models</subject><subject>Models, Psychological</subject><subject>Open Peer Commentary</subject><issn>0140-525X</issn><issn>1469-1825</issn><issn>1469-1825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMotlZ_gBcpeOllNZPPzVGLX1DwoIK3JclmNaW7W5Ndof_e1FYFxbnMYZ55ZngROgZ8Bhjk-QMGhjnhz4ThVLnYQUNgQmWQE76Lhutxtp4P0EGM84RwxtU-GlBFATjIIZpc6pWLY-NWbVOOu1c3XgZXetv5dzcufeyCN33n2-YQ7VV6Ed3Rto_Q0_XV4_Q2m93f3E0vZpklnHdZ7nJrcymIEJYwpjlwYSUxkvOq0sBACUqYojjnVjlZEUElrwC0MsYaZugITTbeZWjfehe7ovbRusVCN67tY0EB51QlK0vo6S903vahSd99UlhgSWiiYEPZ0MYYXFUsg691WBWAi3WMxZ8Y087J1tyb2pXfG1-5JYBupbo2wZcv7uf2_9oPK0N5fQ</recordid><startdate>20240923</startdate><enddate>20240923</enddate><creator>Székely, Anna</creator><creator>Orbán, Gergő</creator><general>Cambridge University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-8654-7733</orcidid><orcidid>https://orcid.org/0000-0002-2406-5912</orcidid></search><sort><creationdate>20240923</creationdate><title>Bayes beyond the predictive distribution</title><author>Székely, Anna ; Orbán, Gergő</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-8e8cc876266c244a5156c72b755ffa1419632493085c9e7f26375f11a9bbcb4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Cognition</topic><topic>Cognition - physiology</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Learning - physiology</topic><topic>Mathematical models</topic><topic>Models, Psychological</topic><topic>Open Peer Commentary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Székely, Anna</creatorcontrib><creatorcontrib>Orbán, Gergő</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>The Behavioral and brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Székely, Anna</au><au>Orbán, Gergő</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayes beyond the predictive distribution</atitle><jtitle>The Behavioral and brain sciences</jtitle><addtitle>Behav Brain Sci</addtitle><date>2024-09-23</date><risdate>2024</risdate><volume>47</volume><spage>e166</spage><pages>e166-</pages><artnum>e166</artnum><issn>0140-525X</issn><issn>1469-1825</issn><eissn>1469-1825</eissn><abstract>Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach beyond a predictive distribution-based comparison, offering new perspectives to evaluate the advantages of these modeling paradigms.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><pmid>39311517</pmid><doi>10.1017/S0140525X24000086</doi><tpages>2</tpages><orcidid>https://orcid.org/0009-0000-8654-7733</orcidid><orcidid>https://orcid.org/0000-0002-2406-5912</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0140-525X
ispartof The Behavioral and brain sciences, 2024-09, Vol.47, p.e166, Article e166
issn 0140-525X
1469-1825
1469-1825
language eng
recordid cdi_proquest_miscellaneous_3108391564
source MEDLINE; Cambridge University Press Journals Complete
subjects Bayes Theorem
Bayesian analysis
Cognition
Cognition - physiology
Humans
Hypotheses
Learning - physiology
Mathematical models
Models, Psychological
Open Peer Commentary
title Bayes beyond the predictive distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayes%20beyond%20the%20predictive%20distribution&rft.jtitle=The%20Behavioral%20and%20brain%20sciences&rft.au=Sz%C3%A9kely,%20Anna&rft.date=2024-09-23&rft.volume=47&rft.spage=e166&rft.pages=e166-&rft.artnum=e166&rft.issn=0140-525X&rft.eissn=1469-1825&rft_id=info:doi/10.1017/S0140525X24000086&rft_dat=%3Cproquest_cross%3E3108391564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108060723&rft_id=info:pmid/39311517&rft_cupid=10_1017_S0140525X24000086&rfr_iscdi=true