Bayes beyond the predictive distribution
Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach...
Gespeichert in:
Veröffentlicht in: | The Behavioral and brain sciences 2024-09, Vol.47, p.e166, Article e166 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | e166 |
container_title | The Behavioral and brain sciences |
container_volume | 47 |
creator | Székely, Anna Orbán, Gergő |
description | Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach beyond a predictive distribution-based comparison, offering new perspectives to evaluate the advantages of these modeling paradigms. |
doi_str_mv | 10.1017/S0140525X24000086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3108391564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0140525X24000086</cupid><sourcerecordid>3108391564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-8e8cc876266c244a5156c72b755ffa1419632493085c9e7f26375f11a9bbcb4b3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlZ_gBcpeOllNZPPzVGLX1DwoIK3JclmNaW7W5Ndof_e1FYFxbnMYZ55ZngROgZ8Bhjk-QMGhjnhz4ThVLnYQUNgQmWQE76Lhutxtp4P0EGM84RwxtU-GlBFATjIIZpc6pWLY-NWbVOOu1c3XgZXetv5dzcufeyCN33n2-YQ7VV6Ed3Rto_Q0_XV4_Q2m93f3E0vZpklnHdZ7nJrcymIEJYwpjlwYSUxkvOq0sBACUqYojjnVjlZEUElrwC0MsYaZugITTbeZWjfehe7ovbRusVCN67tY0EB51QlK0vo6S903vahSd99UlhgSWiiYEPZ0MYYXFUsg691WBWAi3WMxZ8Y087J1tyb2pXfG1-5JYBupbo2wZcv7uf2_9oPK0N5fQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108060723</pqid></control><display><type>article</type><title>Bayes beyond the predictive distribution</title><source>MEDLINE</source><source>Cambridge University Press Journals Complete</source><creator>Székely, Anna ; Orbán, Gergő</creator><creatorcontrib>Székely, Anna ; Orbán, Gergő</creatorcontrib><description>Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach beyond a predictive distribution-based comparison, offering new perspectives to evaluate the advantages of these modeling paradigms.</description><identifier>ISSN: 0140-525X</identifier><identifier>ISSN: 1469-1825</identifier><identifier>EISSN: 1469-1825</identifier><identifier>DOI: 10.1017/S0140525X24000086</identifier><identifier>PMID: 39311517</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Bayes Theorem ; Bayesian analysis ; Cognition ; Cognition - physiology ; Humans ; Hypotheses ; Learning - physiology ; Mathematical models ; Models, Psychological ; Open Peer Commentary</subject><ispartof>The Behavioral and brain sciences, 2024-09, Vol.47, p.e166, Article e166</ispartof><rights>Copyright © The Author(s), 2024. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-8e8cc876266c244a5156c72b755ffa1419632493085c9e7f26375f11a9bbcb4b3</cites><orcidid>0009-0000-8654-7733 ; 0000-0002-2406-5912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0140525X24000086/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39311517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Székely, Anna</creatorcontrib><creatorcontrib>Orbán, Gergő</creatorcontrib><title>Bayes beyond the predictive distribution</title><title>The Behavioral and brain sciences</title><addtitle>Behav Brain Sci</addtitle><description>Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach beyond a predictive distribution-based comparison, offering new perspectives to evaluate the advantages of these modeling paradigms.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Cognition</subject><subject>Cognition - physiology</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Learning - physiology</subject><subject>Mathematical models</subject><subject>Models, Psychological</subject><subject>Open Peer Commentary</subject><issn>0140-525X</issn><issn>1469-1825</issn><issn>1469-1825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMotlZ_gBcpeOllNZPPzVGLX1DwoIK3JclmNaW7W5Ndof_e1FYFxbnMYZ55ZngROgZ8Bhjk-QMGhjnhz4ThVLnYQUNgQmWQE76Lhutxtp4P0EGM84RwxtU-GlBFATjIIZpc6pWLY-NWbVOOu1c3XgZXetv5dzcufeyCN33n2-YQ7VV6Ed3Rto_Q0_XV4_Q2m93f3E0vZpklnHdZ7nJrcymIEJYwpjlwYSUxkvOq0sBACUqYojjnVjlZEUElrwC0MsYaZugITTbeZWjfehe7ovbRusVCN67tY0EB51QlK0vo6S903vahSd99UlhgSWiiYEPZ0MYYXFUsg691WBWAi3WMxZ8Y087J1tyb2pXfG1-5JYBupbo2wZcv7uf2_9oPK0N5fQ</recordid><startdate>20240923</startdate><enddate>20240923</enddate><creator>Székely, Anna</creator><creator>Orbán, Gergő</creator><general>Cambridge University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-8654-7733</orcidid><orcidid>https://orcid.org/0000-0002-2406-5912</orcidid></search><sort><creationdate>20240923</creationdate><title>Bayes beyond the predictive distribution</title><author>Székely, Anna ; Orbán, Gergő</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-8e8cc876266c244a5156c72b755ffa1419632493085c9e7f26375f11a9bbcb4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Cognition</topic><topic>Cognition - physiology</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Learning - physiology</topic><topic>Mathematical models</topic><topic>Models, Psychological</topic><topic>Open Peer Commentary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Székely, Anna</creatorcontrib><creatorcontrib>Orbán, Gergő</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>The Behavioral and brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Székely, Anna</au><au>Orbán, Gergő</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayes beyond the predictive distribution</atitle><jtitle>The Behavioral and brain sciences</jtitle><addtitle>Behav Brain Sci</addtitle><date>2024-09-23</date><risdate>2024</risdate><volume>47</volume><spage>e166</spage><pages>e166-</pages><artnum>e166</artnum><issn>0140-525X</issn><issn>1469-1825</issn><eissn>1469-1825</eissn><abstract>Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach beyond a predictive distribution-based comparison, offering new perspectives to evaluate the advantages of these modeling paradigms.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><pmid>39311517</pmid><doi>10.1017/S0140525X24000086</doi><tpages>2</tpages><orcidid>https://orcid.org/0009-0000-8654-7733</orcidid><orcidid>https://orcid.org/0000-0002-2406-5912</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-525X |
ispartof | The Behavioral and brain sciences, 2024-09, Vol.47, p.e166, Article e166 |
issn | 0140-525X 1469-1825 1469-1825 |
language | eng |
recordid | cdi_proquest_miscellaneous_3108391564 |
source | MEDLINE; Cambridge University Press Journals Complete |
subjects | Bayes Theorem Bayesian analysis Cognition Cognition - physiology Humans Hypotheses Learning - physiology Mathematical models Models, Psychological Open Peer Commentary |
title | Bayes beyond the predictive distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayes%20beyond%20the%20predictive%20distribution&rft.jtitle=The%20Behavioral%20and%20brain%20sciences&rft.au=Sz%C3%A9kely,%20Anna&rft.date=2024-09-23&rft.volume=47&rft.spage=e166&rft.pages=e166-&rft.artnum=e166&rft.issn=0140-525X&rft.eissn=1469-1825&rft_id=info:doi/10.1017/S0140525X24000086&rft_dat=%3Cproquest_cross%3E3108391564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108060723&rft_id=info:pmid/39311517&rft_cupid=10_1017_S0140525X24000086&rfr_iscdi=true |