Bayes beyond the predictive distribution
Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach...
Gespeichert in:
Veröffentlicht in: | The Behavioral and brain sciences 2024-09, Vol.47, p.e166, Article e166 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach beyond a predictive distribution-based comparison, offering new perspectives to evaluate the advantages of these modeling paradigms. |
---|---|
ISSN: | 0140-525X 1469-1825 1469-1825 |
DOI: | 10.1017/S0140525X24000086 |