Bayes beyond the predictive distribution

Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Behavioral and brain sciences 2024-09, Vol.47, p.e166, Article e166
Hauptverfasser: Székely, Anna, Orbán, Gergő
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach beyond a predictive distribution-based comparison, offering new perspectives to evaluate the advantages of these modeling paradigms.
ISSN:0140-525X
1469-1825
1469-1825
DOI:10.1017/S0140525X24000086