Spatiotemporal drivers of agricultural non-point source pollution: A case study of the Huang-Huai-Hai Plain, China
Agricultural non-point source pollution (ANPSP) poses a severe threat to ecological environments, especially in China's major grain-producing regions. Despite the increasing attention, existing studies often overlook the spatial heterogeneity and driving mechanisms of ANPSP within different fun...
Gespeichert in:
Veröffentlicht in: | Journal of environmental management 2024-11, Vol.370, p.122606, Article 122606 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Agricultural non-point source pollution (ANPSP) poses a severe threat to ecological environments, especially in China's major grain-producing regions. Despite the increasing attention, existing studies often overlook the spatial heterogeneity and driving mechanisms of ANPSP within different functional regions. This study addresses this research gap by constructing a bottom-up regional inventory of ANPSP for the Huang-Huai-Hai Plain (HHHP) and applying the Logarithmic Mean Divisia Index (LMDI) decomposition method to analyse the spatio-temporal patterns of ANPSP from 2000 to 2020. Spatial econometric models were further applied to examine the spatial spillover effects of driving factors from the perspective of Major Function-oriented Zoning (MFZ). The results show that while ANPSP emissions in the HHHP have generally increased over the past two decades, a slight decrease has been observed since 2015. Grain yield capacity and cropping intensity were identified as the primary drivers of ANPSP growth, particularly in urbanised zones (UZs) and main agricultural production zones (MAPZs). The study also highlights significant spatial heterogeneity in the impact of driving factors on ANPSP across different MFZs, with marked differences in both the direct and spatial spillover effects of these factors. This underlines the need for differentiated environmental protection policies tailored to the functions and characteristics of each region. By integrating the LMDI decomposition method with spatial econometric models, this study offers a new framework for understanding the ANPSP dynamics within the context of MFZs, providing policymakers with valuable insights for designing effective, regionally coordinated governance strategies.
[Display omitted]
•Constructed a bottom-up inventory of ANPSP in HHHP from 2000 to 2020.•Identified grain production and cultivation intensity as primary drivers of ANPSP.•Utilized SDM model to analyse the spatial impact of driving factors on ANPSP.•Significant spatial heterogeneity existed across different MFZs. |
---|---|
ISSN: | 0301-4797 1095-8630 1095-8630 |
DOI: | 10.1016/j.jenvman.2024.122606 |