Microstructure Design and Dimensional Engineering of Nanomaterials for Electromagnetic Wave Absorption and Thermal Insulation

Multifunctional materials integrated with electromagnetic wave absorption (EWA), thermal insulation, and lightweight properties are urgently indispensable for the flourishing advancement of space technology, which can simultaneously prevent electromagnetic detection and resist aerodynamic heating. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-10, Vol.16 (39), p.51860-51875
Hauptverfasser: Zhao, Tian, Ye, Fang, Huang, Bo, Li, Zhaochen, Cheng, Laifei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multifunctional materials integrated with electromagnetic wave absorption (EWA), thermal insulation, and lightweight properties are urgently indispensable for the flourishing advancement of space technology, which can simultaneously prevent electromagnetic detection and resist aerodynamic heating. To achieve excellent synergistic EWA and thermal insulation performance, the elaborate regulate the microstructure and dimension of nanomaterials has emerged as a captivating research direction. However, comprehending the structure–property relationships between microstructure, electromagnetic response, and thermal insulation mechanisms remains a significant challenge. Herein, a comprehensive perspective focuses on the microstructure design encompassing various dimensions of nanomaterials, providing a comprehensive understanding of correlations among structure, EWA, and thermal insulation. First, the cutting-edge mechanisms of EWA and thermal insulation are elaborated, followed by the relationship between the dimensions of nanomaterials. Moreover, the synergistic design methods of EWA and thermal insulation are explored. Lastly, this review summarizes the corresponding shortcomings and issues of current EWA-integrated thermal insulation materials and proposes breakthrough directions for the creation of materials with superior performance.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c09772