Cello: a disk scheduling framework for next generation operating systems

In this paper, we present the Cello disk scheduling framework for meeting the diverse service requirements of applications. Cello employs a two-level disk scheduling architecture, consisting of a class-independent scheduler and a set of class-specific schedulers. The two levels of the framework allo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shenoy, Prashant J., Vin, Harrick M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present the Cello disk scheduling framework for meeting the diverse service requirements of applications. Cello employs a two-level disk scheduling architecture, consisting of a class-independent scheduler and a set of class-specific schedulers. The two levels of the framework allocate disk bandwidth at two time-scales: the class-independent scheduler governs the coarse-grain allocation of bandwidth to application classes, while the class-specific schedulers control the fine-grain interleaving of requests. The two levels of the architecture separate application-independent mechanisms from application-specific scheduling policies, and thereby facilitate the co-existence of multiple class-specific schedulers. We demonstrate that Cello is suitable for next generation operating systems since: (i) it aligns the service provided with the application requirements, (ii) it protects application classes from one another, (iii) it is work-conserving and can adapt to changes in work-load, (iv) it minimizes the seek time and rotational latency overhead incurred during access, and (v) it is computationally efficient.
ISSN:0163-5999
DOI:10.1145/277851.277871