Cello: a disk scheduling framework for next generation operating systems
In this paper, we present the Cello disk scheduling framework for meeting the diverse service requirements of applications. Cello employs a two-level disk scheduling architecture, consisting of a class-independent scheduler and a set of class-specific schedulers. The two levels of the framework allo...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present the Cello disk scheduling framework for meeting the diverse service requirements of applications. Cello employs a two-level disk scheduling architecture, consisting of a class-independent scheduler and a set of class-specific schedulers. The two levels of the framework allocate disk bandwidth at two time-scales: the class-independent scheduler governs the coarse-grain allocation of bandwidth to application classes, while the class-specific schedulers control the fine-grain interleaving of requests. The two levels of the architecture separate application-independent mechanisms from application-specific scheduling policies, and thereby facilitate the co-existence of multiple class-specific schedulers. We demonstrate that Cello is suitable for next generation operating systems since: (i) it aligns the service provided with the application requirements, (ii) it protects application classes from one another, (iii) it is work-conserving and can adapt to changes in work-load, (iv) it minimizes the seek time and rotational latency overhead incurred during access, and (v) it is computationally efficient. |
---|---|
ISSN: | 0163-5999 |
DOI: | 10.1145/277851.277871 |