Concise and Efficient Synthesis of Sequentially Isomeric Hetero3rotaxanes

Stereoisomerism, stemming from the spatial orientation of components in molecular structures, plays a decisive role in nature. While the unconventional bonding found in mechanically interlocked molecules gives rise to unique expressions of stereochemistry, the exploration of their stereoisomers is s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-10, Vol.146 (39), p.27109
Hauptverfasser: Lee, Christopher K, Feng, Yuanning, Tajik, Mohammad, Violi, Jake P, Donald, William A, Stoddart, J Fraser, Kim, Dong Jun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stereoisomerism, stemming from the spatial orientation of components in molecular structures, plays a decisive role in nature. While the unconventional bonding found in mechanically interlocked molecules gives rise to unique expressions of stereochemistry, the exploration of their stereoisomers is still in its infancy. Sequence isomerism, characterized by variations in the ordering of mechanically interlocked components in catenanes and rotaxanes, mirrors the sequence variations found in biological macromolecules. Herein, we report the use of artificial molecular pumps for the precise and simple production of sequentially isomeric hetero[3]rotaxanes. Utilizing redox-driven pumping cassettes with different rings, we have synthesized two hetero[3]rotaxane isomers in high isolated yields from two [2]rotaxanes. This research represents a significant advance in sequential molecular assembly, paving the way for the development of sophisticated, functionalized, mechanically interlocked materials.Stereoisomerism, stemming from the spatial orientation of components in molecular structures, plays a decisive role in nature. While the unconventional bonding found in mechanically interlocked molecules gives rise to unique expressions of stereochemistry, the exploration of their stereoisomers is still in its infancy. Sequence isomerism, characterized by variations in the ordering of mechanically interlocked components in catenanes and rotaxanes, mirrors the sequence variations found in biological macromolecules. Herein, we report the use of artificial molecular pumps for the precise and simple production of sequentially isomeric hetero[3]rotaxanes. Utilizing redox-driven pumping cassettes with different rings, we have synthesized two hetero[3]rotaxane isomers in high isolated yields from two [2]rotaxanes. This research represents a significant advance in sequential molecular assembly, paving the way for the development of sophisticated, functionalized, mechanically interlocked materials.
ISSN:1520-5126
1520-5126
DOI:10.1021/jacs.4c09406