Unveiling chlorine's role: How it shapes the formation and light-activated oxygen dynamics of chlorophenol-derived environmental persistent free radicals

Environmental persistent free radicals (EPFRs) derived from chlorophenols, triggered by light or heat exposure, pose significant ecological concerns, yet the impact of chlorine substituents on EPFRs formation and reactivity remains inadequately understood. Through an intentional synthesis of chlorop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2024-12, Vol.480, p.135870, Article 135870
Hauptverfasser: Jin, Xingzhi, Gao, Di, Zhang, Chunyan, Chen, Chen, Li, Yuyue, Chen, Hao, Cai, Peng, Li, Jianwei, Ding, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Environmental persistent free radicals (EPFRs) derived from chlorophenols, triggered by light or heat exposure, pose significant ecological concerns, yet the impact of chlorine substituents on EPFRs formation and reactivity remains inadequately understood. Through an intentional synthesis of chlorophenol-derived EPFRs with varying chlorine contents and positioning, we elucidated the role of chlorine in the photoactivation of molecular oxygen. Our combined experimental and theoretical analysis reveals that these EPFRs are primarily oxygen-centered phenoxy radicals, establishing a direct link between chlorine substitution patterns and their ability to activate molecular oxygen under visible light. Increased chlorine content enhances EPFRs formation by elevating the positive charge on the phenolic hydroxyl group’s hydrogen atom, facilitating its removal. Moreover, the capability of EPFRs to activate molecular oxygen was directly correlated with chlorine content, with 2,3,5,6-tetrachlorophenol-derived EPFRs showcasing the highest activity. This activity is attributed to their structural propensity for TCSQ·- species generation. Furthermore, our study established a significant correlation between the toxicity and activity of EPFRs, emphasizing the critical role of halogen substituents in determining the reactivity of EPFRs. These insights contribute to our understanding of their environmental and toxicological ramifications, underscoring the imperative for continued research aimed at mitigating their detrimental impacts. [Display omitted] •A direct correlation between the chlorine substitution pattern and their formation is unveiled.•An augmented Cl content increases the positive charge on the H atom of the phenolic hydroxyl group.•EPFRs derived from 2,3,5,6-tetrachlorophenol (TeCP) can readily convert into reactive TCSQ·-.•Chlorophenol-derived EPFRs exhibit direct toxicity towards Shewanella oneidensis MR-1.
ISSN:0304-3894
1873-3336
1873-3336
DOI:10.1016/j.jhazmat.2024.135870