Deciphering the cytotoxicity of micro- and nanoplastics in Caco-2 cells through meta-analysis and machine learning

Plastic pollution, driven by micro- and nanoplastics (MNPs), poses a major environmental threat, exposing humans through various routes. Despite human colorectal adenocarcinoma Caco-2 cells being used as an in vitro model for studying the intestinal epithelium, uncertainties linger about MNPs harmin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2024-12, Vol.362, p.124971, Article 124971
Hauptverfasser: Ferreira, Raphaela O.G., Nag, Rajat, Gowen, Aoife, Xu, Jun-Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 124971
container_title Environmental pollution (1987)
container_volume 362
creator Ferreira, Raphaela O.G.
Nag, Rajat
Gowen, Aoife
Xu, Jun-Li
description Plastic pollution, driven by micro- and nanoplastics (MNPs), poses a major environmental threat, exposing humans through various routes. Despite human colorectal adenocarcinoma Caco-2 cells being used as an in vitro model for studying the intestinal epithelium, uncertainties linger about MNPs harming these cells and the factors influencing adverse effects. Addressing this lacuna, our study aimed to elucidate the pivotal MNP parameters influencing cytotoxicity in Caco-2 cells, employing meta-analysis and machine learning techniques for quantitative assessment. Initial scrutiny of 95 publications yielded 17 that met the inclusion criteria, generating a dataset of 320 data points. This dataset underwent meticulous stratification based on polymer type, exposure time, polymer size, MNP concentration, and biological assays utilised. Subsequent dose-response curve analysis revealed moderate correlations for selected subgroups, such as the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) MTT biological assay and exposure time exceeding 24 h, with coefficient of determination (R2) values of 0.50 (p-value: 0.0065) and 0.60 (p-value: 0.0018) respectively. For the aforementioned two subgroups, the MNP concentrations surpassing 10 μg/mL led to diminished viability of Caco-2 cells. Notably, we observed challenges in employing meta-analysis to navigate this multidimensional MNP dataset. Leveraging a random forest model, we achieved improved predictive performance, with R2 values of 0.79 and a root mean square error (RMSE) of 0.14 for the prediction of the Log Response Ratio on the test set. Model interpretation indicated that size and concentration are the principal drivers influencing Caco-2 cell cytotoxicity. Additionally, the partial dependence plot illustrating the relationship between the size of MNPs and predicted cytotoxicity reveals a complex pattern. Our study provides crucial insights into the health impacts of plastic pollution, informing policymakers for targeted interventions, thus contributing to a comprehensive understanding of its human health consequences. [Display omitted] •Meta-Analysis was unable to manage multidimensional data of micro- and nanoplastics (MNPs).•Machine learning (ML) predicted the cytotoxicity of MNPs in Caco-2 cells with a low error.•Good ML model predictive capability was evidenced by R2 values of 0.79.•ML model showed that size and concentrations are key drivers of cytotoxicity.
doi_str_mv 10.1016/j.envpol.2024.124971
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3106733209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0269749124016865</els_id><sourcerecordid>3106733209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-dcf7d9b63ba3c5efe8e61df4e48b9c5b471eb8bae4a097b54810cfeba259f36b3</originalsourceid><addsrcrecordid>eNp9kMtu2zAQRYmiQew8_qAouOxGLl96cBOgcJqkQIBskjVBUiObhkSqJB3Ef9Nv6ZdFjpIuu5rNuXNnDkJfKFlRQqvvuxX45zH0K0aYWFEmZE0_oSVtal5UgonPaElYJYtaSLpAZyntCCGCc36KFlwyyatSLFG6BuvGLUTnNzhvAdtDDjm8OOvyAYcOD87GUGDtW-y1D2OvU3Y2YefxWttQsL9_LPR9msIx7DdbPEDWhfa6PySX3nKDtlvnAfego596LtBJp_sEl-_zHD3d_Hxc3xX3D7e_1j_uC8uaOhet7epWmoobzW0JHTRQ0bYTIBojbWlETcE0RoPQRNamFA0ltgOjWSk7Xhl-jr7Ne8cYfu8hZTW4dDxWewj7pDglVc05I3JCxYxOz6YUoVNjdIOOB0WJOupWOzXrVkfdatY9xb6-N-zNAO2_0IffCbiaAZj-fHYQVbIOvIXWRbBZtcH9v-EVYnSWjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106733209</pqid></control><display><type>article</type><title>Deciphering the cytotoxicity of micro- and nanoplastics in Caco-2 cells through meta-analysis and machine learning</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Ferreira, Raphaela O.G. ; Nag, Rajat ; Gowen, Aoife ; Xu, Jun-Li</creator><creatorcontrib>Ferreira, Raphaela O.G. ; Nag, Rajat ; Gowen, Aoife ; Xu, Jun-Li</creatorcontrib><description>Plastic pollution, driven by micro- and nanoplastics (MNPs), poses a major environmental threat, exposing humans through various routes. Despite human colorectal adenocarcinoma Caco-2 cells being used as an in vitro model for studying the intestinal epithelium, uncertainties linger about MNPs harming these cells and the factors influencing adverse effects. Addressing this lacuna, our study aimed to elucidate the pivotal MNP parameters influencing cytotoxicity in Caco-2 cells, employing meta-analysis and machine learning techniques for quantitative assessment. Initial scrutiny of 95 publications yielded 17 that met the inclusion criteria, generating a dataset of 320 data points. This dataset underwent meticulous stratification based on polymer type, exposure time, polymer size, MNP concentration, and biological assays utilised. Subsequent dose-response curve analysis revealed moderate correlations for selected subgroups, such as the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) MTT biological assay and exposure time exceeding 24 h, with coefficient of determination (R2) values of 0.50 (p-value: 0.0065) and 0.60 (p-value: 0.0018) respectively. For the aforementioned two subgroups, the MNP concentrations surpassing 10 μg/mL led to diminished viability of Caco-2 cells. Notably, we observed challenges in employing meta-analysis to navigate this multidimensional MNP dataset. Leveraging a random forest model, we achieved improved predictive performance, with R2 values of 0.79 and a root mean square error (RMSE) of 0.14 for the prediction of the Log Response Ratio on the test set. Model interpretation indicated that size and concentration are the principal drivers influencing Caco-2 cell cytotoxicity. Additionally, the partial dependence plot illustrating the relationship between the size of MNPs and predicted cytotoxicity reveals a complex pattern. Our study provides crucial insights into the health impacts of plastic pollution, informing policymakers for targeted interventions, thus contributing to a comprehensive understanding of its human health consequences. [Display omitted] •Meta-Analysis was unable to manage multidimensional data of micro- and nanoplastics (MNPs).•Machine learning (ML) predicted the cytotoxicity of MNPs in Caco-2 cells with a low error.•Good ML model predictive capability was evidenced by R2 values of 0.79.•ML model showed that size and concentrations are key drivers of cytotoxicity.</description><identifier>ISSN: 0269-7491</identifier><identifier>ISSN: 1873-6424</identifier><identifier>EISSN: 1873-6424</identifier><identifier>DOI: 10.1016/j.envpol.2024.124971</identifier><identifier>PMID: 39293654</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Caco-2 Cells ; Cell Survival - drug effects ; Dose-response ; Environmental Pollutants - toxicity ; Hazard characterization ; Human health ; Humans ; Machine Learning ; Microplastics - toxicity ; Nanoparticles - toxicity ; Regression model ; Risk assessment ; Systematic review</subject><ispartof>Environmental pollution (1987), 2024-12, Vol.362, p.124971, Article 124971</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-dcf7d9b63ba3c5efe8e61df4e48b9c5b471eb8bae4a097b54810cfeba259f36b3</cites><orcidid>0000-0003-0956-8770 ; 0009-0005-2908-2892 ; 0000-0002-9494-2204 ; 0000-0002-4442-7538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envpol.2024.124971$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39293654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferreira, Raphaela O.G.</creatorcontrib><creatorcontrib>Nag, Rajat</creatorcontrib><creatorcontrib>Gowen, Aoife</creatorcontrib><creatorcontrib>Xu, Jun-Li</creatorcontrib><title>Deciphering the cytotoxicity of micro- and nanoplastics in Caco-2 cells through meta-analysis and machine learning</title><title>Environmental pollution (1987)</title><addtitle>Environ Pollut</addtitle><description>Plastic pollution, driven by micro- and nanoplastics (MNPs), poses a major environmental threat, exposing humans through various routes. Despite human colorectal adenocarcinoma Caco-2 cells being used as an in vitro model for studying the intestinal epithelium, uncertainties linger about MNPs harming these cells and the factors influencing adverse effects. Addressing this lacuna, our study aimed to elucidate the pivotal MNP parameters influencing cytotoxicity in Caco-2 cells, employing meta-analysis and machine learning techniques for quantitative assessment. Initial scrutiny of 95 publications yielded 17 that met the inclusion criteria, generating a dataset of 320 data points. This dataset underwent meticulous stratification based on polymer type, exposure time, polymer size, MNP concentration, and biological assays utilised. Subsequent dose-response curve analysis revealed moderate correlations for selected subgroups, such as the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) MTT biological assay and exposure time exceeding 24 h, with coefficient of determination (R2) values of 0.50 (p-value: 0.0065) and 0.60 (p-value: 0.0018) respectively. For the aforementioned two subgroups, the MNP concentrations surpassing 10 μg/mL led to diminished viability of Caco-2 cells. Notably, we observed challenges in employing meta-analysis to navigate this multidimensional MNP dataset. Leveraging a random forest model, we achieved improved predictive performance, with R2 values of 0.79 and a root mean square error (RMSE) of 0.14 for the prediction of the Log Response Ratio on the test set. Model interpretation indicated that size and concentration are the principal drivers influencing Caco-2 cell cytotoxicity. Additionally, the partial dependence plot illustrating the relationship between the size of MNPs and predicted cytotoxicity reveals a complex pattern. Our study provides crucial insights into the health impacts of plastic pollution, informing policymakers for targeted interventions, thus contributing to a comprehensive understanding of its human health consequences. [Display omitted] •Meta-Analysis was unable to manage multidimensional data of micro- and nanoplastics (MNPs).•Machine learning (ML) predicted the cytotoxicity of MNPs in Caco-2 cells with a low error.•Good ML model predictive capability was evidenced by R2 values of 0.79.•ML model showed that size and concentrations are key drivers of cytotoxicity.</description><subject>Caco-2 Cells</subject><subject>Cell Survival - drug effects</subject><subject>Dose-response</subject><subject>Environmental Pollutants - toxicity</subject><subject>Hazard characterization</subject><subject>Human health</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Microplastics - toxicity</subject><subject>Nanoparticles - toxicity</subject><subject>Regression model</subject><subject>Risk assessment</subject><subject>Systematic review</subject><issn>0269-7491</issn><issn>1873-6424</issn><issn>1873-6424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtu2zAQRYmiQew8_qAouOxGLl96cBOgcJqkQIBskjVBUiObhkSqJB3Ef9Nv6ZdFjpIuu5rNuXNnDkJfKFlRQqvvuxX45zH0K0aYWFEmZE0_oSVtal5UgonPaElYJYtaSLpAZyntCCGCc36KFlwyyatSLFG6BuvGLUTnNzhvAdtDDjm8OOvyAYcOD87GUGDtW-y1D2OvU3Y2YefxWttQsL9_LPR9msIx7DdbPEDWhfa6PySX3nKDtlvnAfego596LtBJp_sEl-_zHD3d_Hxc3xX3D7e_1j_uC8uaOhet7epWmoobzW0JHTRQ0bYTIBojbWlETcE0RoPQRNamFA0ltgOjWSk7Xhl-jr7Ne8cYfu8hZTW4dDxWewj7pDglVc05I3JCxYxOz6YUoVNjdIOOB0WJOupWOzXrVkfdatY9xb6-N-zNAO2_0IffCbiaAZj-fHYQVbIOvIXWRbBZtcH9v-EVYnSWjQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Ferreira, Raphaela O.G.</creator><creator>Nag, Rajat</creator><creator>Gowen, Aoife</creator><creator>Xu, Jun-Li</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0956-8770</orcidid><orcidid>https://orcid.org/0009-0005-2908-2892</orcidid><orcidid>https://orcid.org/0000-0002-9494-2204</orcidid><orcidid>https://orcid.org/0000-0002-4442-7538</orcidid></search><sort><creationdate>20241201</creationdate><title>Deciphering the cytotoxicity of micro- and nanoplastics in Caco-2 cells through meta-analysis and machine learning</title><author>Ferreira, Raphaela O.G. ; Nag, Rajat ; Gowen, Aoife ; Xu, Jun-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-dcf7d9b63ba3c5efe8e61df4e48b9c5b471eb8bae4a097b54810cfeba259f36b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Caco-2 Cells</topic><topic>Cell Survival - drug effects</topic><topic>Dose-response</topic><topic>Environmental Pollutants - toxicity</topic><topic>Hazard characterization</topic><topic>Human health</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Microplastics - toxicity</topic><topic>Nanoparticles - toxicity</topic><topic>Regression model</topic><topic>Risk assessment</topic><topic>Systematic review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Raphaela O.G.</creatorcontrib><creatorcontrib>Nag, Rajat</creatorcontrib><creatorcontrib>Gowen, Aoife</creatorcontrib><creatorcontrib>Xu, Jun-Li</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental pollution (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, Raphaela O.G.</au><au>Nag, Rajat</au><au>Gowen, Aoife</au><au>Xu, Jun-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering the cytotoxicity of micro- and nanoplastics in Caco-2 cells through meta-analysis and machine learning</atitle><jtitle>Environmental pollution (1987)</jtitle><addtitle>Environ Pollut</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>362</volume><spage>124971</spage><pages>124971-</pages><artnum>124971</artnum><issn>0269-7491</issn><issn>1873-6424</issn><eissn>1873-6424</eissn><abstract>Plastic pollution, driven by micro- and nanoplastics (MNPs), poses a major environmental threat, exposing humans through various routes. Despite human colorectal adenocarcinoma Caco-2 cells being used as an in vitro model for studying the intestinal epithelium, uncertainties linger about MNPs harming these cells and the factors influencing adverse effects. Addressing this lacuna, our study aimed to elucidate the pivotal MNP parameters influencing cytotoxicity in Caco-2 cells, employing meta-analysis and machine learning techniques for quantitative assessment. Initial scrutiny of 95 publications yielded 17 that met the inclusion criteria, generating a dataset of 320 data points. This dataset underwent meticulous stratification based on polymer type, exposure time, polymer size, MNP concentration, and biological assays utilised. Subsequent dose-response curve analysis revealed moderate correlations for selected subgroups, such as the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) MTT biological assay and exposure time exceeding 24 h, with coefficient of determination (R2) values of 0.50 (p-value: 0.0065) and 0.60 (p-value: 0.0018) respectively. For the aforementioned two subgroups, the MNP concentrations surpassing 10 μg/mL led to diminished viability of Caco-2 cells. Notably, we observed challenges in employing meta-analysis to navigate this multidimensional MNP dataset. Leveraging a random forest model, we achieved improved predictive performance, with R2 values of 0.79 and a root mean square error (RMSE) of 0.14 for the prediction of the Log Response Ratio on the test set. Model interpretation indicated that size and concentration are the principal drivers influencing Caco-2 cell cytotoxicity. Additionally, the partial dependence plot illustrating the relationship between the size of MNPs and predicted cytotoxicity reveals a complex pattern. Our study provides crucial insights into the health impacts of plastic pollution, informing policymakers for targeted interventions, thus contributing to a comprehensive understanding of its human health consequences. [Display omitted] •Meta-Analysis was unable to manage multidimensional data of micro- and nanoplastics (MNPs).•Machine learning (ML) predicted the cytotoxicity of MNPs in Caco-2 cells with a low error.•Good ML model predictive capability was evidenced by R2 values of 0.79.•ML model showed that size and concentrations are key drivers of cytotoxicity.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39293654</pmid><doi>10.1016/j.envpol.2024.124971</doi><orcidid>https://orcid.org/0000-0003-0956-8770</orcidid><orcidid>https://orcid.org/0009-0005-2908-2892</orcidid><orcidid>https://orcid.org/0000-0002-9494-2204</orcidid><orcidid>https://orcid.org/0000-0002-4442-7538</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0269-7491
ispartof Environmental pollution (1987), 2024-12, Vol.362, p.124971, Article 124971
issn 0269-7491
1873-6424
1873-6424
language eng
recordid cdi_proquest_miscellaneous_3106733209
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Caco-2 Cells
Cell Survival - drug effects
Dose-response
Environmental Pollutants - toxicity
Hazard characterization
Human health
Humans
Machine Learning
Microplastics - toxicity
Nanoparticles - toxicity
Regression model
Risk assessment
Systematic review
title Deciphering the cytotoxicity of micro- and nanoplastics in Caco-2 cells through meta-analysis and machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20the%20cytotoxicity%20of%20micro-%20and%20nanoplastics%20in%20Caco-2%C2%A0cells%20through%20meta-analysis%20and%20machine%20learning&rft.jtitle=Environmental%20pollution%20(1987)&rft.au=Ferreira,%20Raphaela%20O.G.&rft.date=2024-12-01&rft.volume=362&rft.spage=124971&rft.pages=124971-&rft.artnum=124971&rft.issn=0269-7491&rft.eissn=1873-6424&rft_id=info:doi/10.1016/j.envpol.2024.124971&rft_dat=%3Cproquest_cross%3E3106733209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106733209&rft_id=info:pmid/39293654&rft_els_id=S0269749124016865&rfr_iscdi=true