Deciphering the cytotoxicity of micro- and nanoplastics in Caco-2 cells through meta-analysis and machine learning
Plastic pollution, driven by micro- and nanoplastics (MNPs), poses a major environmental threat, exposing humans through various routes. Despite human colorectal adenocarcinoma Caco-2 cells being used as an in vitro model for studying the intestinal epithelium, uncertainties linger about MNPs harmin...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 2024-12, Vol.362, p.124971, Article 124971 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plastic pollution, driven by micro- and nanoplastics (MNPs), poses a major environmental threat, exposing humans through various routes. Despite human colorectal adenocarcinoma Caco-2 cells being used as an in vitro model for studying the intestinal epithelium, uncertainties linger about MNPs harming these cells and the factors influencing adverse effects. Addressing this lacuna, our study aimed to elucidate the pivotal MNP parameters influencing cytotoxicity in Caco-2 cells, employing meta-analysis and machine learning techniques for quantitative assessment. Initial scrutiny of 95 publications yielded 17 that met the inclusion criteria, generating a dataset of 320 data points. This dataset underwent meticulous stratification based on polymer type, exposure time, polymer size, MNP concentration, and biological assays utilised. Subsequent dose-response curve analysis revealed moderate correlations for selected subgroups, such as the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) MTT biological assay and exposure time exceeding 24 h, with coefficient of determination (R2) values of 0.50 (p-value: 0.0065) and 0.60 (p-value: 0.0018) respectively. For the aforementioned two subgroups, the MNP concentrations surpassing 10 μg/mL led to diminished viability of Caco-2 cells. Notably, we observed challenges in employing meta-analysis to navigate this multidimensional MNP dataset. Leveraging a random forest model, we achieved improved predictive performance, with R2 values of 0.79 and a root mean square error (RMSE) of 0.14 for the prediction of the Log Response Ratio on the test set. Model interpretation indicated that size and concentration are the principal drivers influencing Caco-2 cell cytotoxicity. Additionally, the partial dependence plot illustrating the relationship between the size of MNPs and predicted cytotoxicity reveals a complex pattern. Our study provides crucial insights into the health impacts of plastic pollution, informing policymakers for targeted interventions, thus contributing to a comprehensive understanding of its human health consequences.
[Display omitted]
•Meta-Analysis was unable to manage multidimensional data of micro- and nanoplastics (MNPs).•Machine learning (ML) predicted the cytotoxicity of MNPs in Caco-2 cells with a low error.•Good ML model predictive capability was evidenced by R2 values of 0.79.•ML model showed that size and concentrations are key drivers of cytotoxicity. |
---|---|
ISSN: | 0269-7491 1873-6424 1873-6424 |
DOI: | 10.1016/j.envpol.2024.124971 |