Shear-thinning hydrogel for allograft cell transplantation and externally controlled transgene expression
This work establishes the design of a fully synthetic, shear-thinning hydrogel platform that is injectable and can isolate engineered, allogeneic cell therapies from the host. We utilized RAFT to generate a library of linear random copolymers of N,N-dimethylacrylamide (DMA) and 2-vinyl-4,4-dimethyl...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2025-03, Vol.314, p.122812, Article 122812 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work establishes the design of a fully synthetic, shear-thinning hydrogel platform that is injectable and can isolate engineered, allogeneic cell therapies from the host. We utilized RAFT to generate a library of linear random copolymers of N,N-dimethylacrylamide (DMA) and 2-vinyl-4,4-dimethyl azlactone (VDMA) with variable mol% VDMA and degree of polymerization. Poly(DMA-co-VDMA) copolymers were subsequently modified with either adamantane (Ad) or β-cyclodextrin (Cd) through amine-reactive VDMA to prepare hydrogel precursor macromers containing complementary guest-host pairing pendant groups that, when mixed, form shear-thinning hydrogels. Rheometric evaluation of the hydrogel library enabled identification of lead macromer structures comprising 15 mol% pendants (Ad or Cd) and a degree of polymerization of 1000; mixing of these Ad and Cd functionalized precursors yielded hydrogels possessing storage modulus above 1000 Pa, tan(δ) values below 1 and high yield strain, which are target characteristics of robust but injectable shear-thinning gels. This modular system proved amenable to nanoparticle integration with surface-modified nanoparticles displaying Ad. The addition of the Ad-functionalized nanoparticles simultaneously improved mechanical properties of the hydrogels and enabled extended hydrogel retention of a model small molecule in vivo. In studies benchmarking against alginate, a material traditionally used for cell encapsulation, the lead hydrogel showed significantly less fibrous encapsulation in a subcutaneous implant site. Finally, this platform was utilized to encapsulate and extend in vivo longevity of inducible transgene-engineered mesenchymal stem cells in an allogeneic transplant model. The hydrogels remained intact and blocked infiltration by host cells, consequently extending the longevity of grafted cell function relative to a benchmark, shear-thinning hyaluronic acid-based gel. In sum, the new synthetic, shear-thinning hydrogel system presented here shows potential for further development as an injectable platform for delivery and in situ drug modulation of allograft and engineered cell therapies.
[Display omitted] |
---|---|
ISSN: | 0142-9612 1878-5905 1878-5905 |
DOI: | 10.1016/j.biomaterials.2024.122812 |