Evaluation of a new hyperbaric oxygen ventilator during pressure-controlled ventilation

The stability of a new hyperbaric ventilator (Shangrila590, Beijing Aeonmed Company, Beijing, China) at different clinically relevant pressures in a hyperbaric chamber during pressure-controlled ventilation (PCV) was investigated. The ventilator was connected to a test lung in the multiplace hyperba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diving and hyperbaric medicine 2024-09, Vol.54 (3), p.212-216
Hauptverfasser: Wang, Cong, Yu, Qiuhong, Liu, Yaling, Ren, Ziqi, Liu, Ying, Xue, Lianbi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stability of a new hyperbaric ventilator (Shangrila590, Beijing Aeonmed Company, Beijing, China) at different clinically relevant pressures in a hyperbaric chamber during pressure-controlled ventilation (PCV) was investigated. The ventilator was connected to a test lung in the multiplace hyperbaric chamber. The inspiratory pressure (PI) of the ventilator was set to 1.0, 1.5, 2.0, 2.5 and 3.0 kPa (approximately 10, 15, 20, 25 and 30 cmH₂O). The compliance and resistance of the test lung were set to 200 mL·kPa⁻¹ and 2 kPa·L⁻¹·s⁻¹, respectively. Experiments were conducted at 101, 203 and 284 kPa ambient pressure (1.0, 2.0 and 2.8 atmospheres absolute respectively). At each of the 5 PI values, the tidal volume (VT), peak inspiratory pressure (Ppeak) and peak inspiratory flow (Fpeak) displayed by the ventilator and the test lung were recorded for 20 cycles. Test lung data were considered the actual ventilation values. The ventilation data were compared among the three groups to evaluate the stability of the ventilator. At every PI, the Ppeak detected by the ventilator decreased slightly with increasing ambient pressure. The Fpeak values measured by the test lung decreased substantially as the ambient pressure increased. Nevertheless, the reduction in VT at 284 kPa and PI 30 cmH₂O (compared to performance at 101 kPa) was comparatively small (approximately 60 ml). In PCV mode this ventilator provided relatively stable VT across clinically relevant PI values to ambient pressures as high as 284 kPa. However, because Fpeak decreases at higher ambient pressure, some user adjustment might be necessary for precise VT maintenance during clinical use at higher PIs and ambient pressures.
ISSN:1833-3516
2209-1491
2209-1491
DOI:10.28920/dhm54.3.212-216