A multiscale distributed neural computing model database (NCMD) for neuromorphic architecture

Distributed neuromorphic architecture is a promising technique for on-chip processing of multiple tasks. Deploying the constructed model in a distributed neuromorphic system, however, remains time-consuming and challenging due to considerations such as network topology, connection rules, and compati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2024-12, Vol.180, p.106727, Article 106727
Hauptverfasser: Gong, Bo, Wang, Jiang, Chang, Siyuan, Xue, Gang, Wei, Xile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Distributed neuromorphic architecture is a promising technique for on-chip processing of multiple tasks. Deploying the constructed model in a distributed neuromorphic system, however, remains time-consuming and challenging due to considerations such as network topology, connection rules, and compatibility with multiple programming languages. We proposed a multiscale distributed neural computing model database (NCMD), which is a framework designed for ARM-based multi-core hardware. Various neural computing components, including ion channels, synapses, and neurons, are encompassed in NCMD. We demonstrated how NCMD constructs and deploys multi-compartmental detailed neuron models as well as spiking neural networks (SNNs) in BrainS, a distributed multi-ARM neuromorphic system. We demonstrated that the electrodiffusive Pinsky–Rinzel (edPR) model developed by NCMD is well-suited for BrainS. All dynamic properties, such as changes in membrane potential and ion concentrations, can be easily explored. In addition, SNNs constructed by NCMD can achieve an accuracy of 86.67% on the test set of the Iris dataset. The proposed NCMD offers an innovative approach to applying BrainS in neuroscience, cognitive decision-making, and artificial intelligence research.
ISSN:0893-6080
1879-2782
1879-2782
DOI:10.1016/j.neunet.2024.106727