Christov-Galerkin Expansion for Localized Solutions in Model Equations with Higher Order Dispersion

We develop a Galerkin spectral technique for computing localized solutions of equations with higher order dispersion. To this end, the complete orthonormal system of functions in L2(-[infinity],[infinity]) proposed by Christov [1] is used.As a featuring example, the Sixth-Order Generalized Boussines...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Christou, M A
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a Galerkin spectral technique for computing localized solutions of equations with higher order dispersion. To this end, the complete orthonormal system of functions in L2(-[infinity],[infinity]) proposed by Christov [1] is used.As a featuring example, the Sixth-Order Generalized Boussinesq Equation (6GBE) is investigated whose solutions comprise monotone shapes (sech-es) and damped oscillatory shapes (Kawahara solitons). Localized solutions are obtained here numerically for the case of the moving frame which are used as initial conditions for the time dependent problem.
ISSN:0094-243X
DOI:10.1063/1.2806043