Simultaneous detection of CaMV35S and NOS using fluorescence sensors with dual-emission silver nanoclusters and catalytic hairpin amplification strategy
A dual-emission fluorescent biosensing method was developed for simultaneous determination of CaMV35S and NOS in genetically modified (GM) plants. Two designed hairpin DNA (H1, H2) sequences were used as templates to synthesize H1-AgNCs ( λ ex = 570 nm, λ em = 625 nm) and H2-AgNCs ( λ ex = 470 nm...
Gespeichert in:
Veröffentlicht in: | Mikrochimica acta (1966) 2024-10, Vol.191 (10), p.601, Article 601 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 601 |
container_title | Mikrochimica acta (1966) |
container_volume | 191 |
creator | Ye, Yongkang Zhai, Yinghui Zhang, Chenlu Li, Xu Wang, Shaopeng Lu, Yuexi Cao, Xiaodong He, Shudong Zheng, Haisong Li, Yunfei Tao, Yunlai |
description | A dual-emission fluorescent biosensing method was developed for simultaneous determination of CaMV35S and NOS in genetically modified (GM) plants. Two designed hairpin DNA (H1, H2) sequences were used as templates to synthesize H1-AgNCs (
λ
ex
= 570 nm,
λ
em
= 625 nm) and H2-AgNCs (
λ
ex
= 470 nm,
λ
em
= 555 nm). By using H1-AgNCs and H2-AgNCs as dual-signal tags, combined with signal amplification strategy of magnetic separation to reduce background signal and an enzyme-free catalytic hairpin assembly (CHA) signal amplification strategy, a novel multi-target fluorescent biosensor was fabricated to detect multiple targets based on FRET between signal tags (donors) and magnetic Fe
3
O
4
modified graphene oxide (Fe
3
O
4
@GO, acceptors). In the presence of the target NOS and CaMV35S, the hairpin structures of H1 and H2 can be opened respectively, and the exposed sequences will hybridize with the G-rich hairpin sequences HP1 and HP2 respectively, displacing the target sequences to participate in the next round of CHA cycle. Meanwhile, H1-HP1 and H2-HP2 double-stranded DNA sequences (dsDNA) were formed, resulting in the desorption of dsDNA from the surface of Fe
3
O
4
@GO due to weak π-π interaction between dsDNA and Fe
3
O
4
@GO and leading to the fluorescence recovery of AgNCs. Under optimal conditions, the linear ranges of this fluorescence sensor were 5 ~ 300 nmol L
−1
for NOS and 5 ~ 200 nmol L
−1
CaMV35S, and the LODs were 0.14 nmol L
−1
and 0.18 nmol L
−1
, respectively. In addition, the fluorescence sensor has good selectivity for the detection of NOS and CaMV35S in GM soybean samples, showing the potential applications in GM screening.
Graphical Abstract |
doi_str_mv | 10.1007/s00604-024-06702-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3106044545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3105939084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-156586dce115133c85cc0c1c375ee9b2c589b8a186019749d5abf13153b6cbc73</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EoreFF2CBLLFhE-qf2ImX6IqfSqVd3Jat5TiTW1eOc7Ed0H0THhenKSCxYDHyYr5zZjwHoVeUvKOENOeJEEnqirBSsiGsUk_QhtZcVoI0_CnaEMJkxWXDTtBpSveE0Eay-jk64Yq1nNdkg37u3Dj7bAJMc8I9ZLDZTQFPA96aL1-52GETenx1vcNzcmGPBz9PEZKFYAEnCGmKCf9w-Q73s_EVjC6lxSA5_x0iDiZM1s8pQ8EWJ2uy8cfsLL4zLh5cwGY8eDe40njQ5Wgy7I8v0LPB-AQvH98zdPvxw832c3V5_eli-_6yskzIXFEhRSt7C5QKyrlthbXEUssbAaA6ZkWrutbQVhKqmlr1wnQD5VTwTtrONvwMvV19D3H6NkPKuvzAgvfrSTSny5FrUYuCvvkHvZ_mGMp2CyUUV6StC8VWysYppQiDPkQ3mnjUlOglN73mpktu-iE3rYro9aP13I3Q_5H8DqoAfAVSaYU9xL-z_2P7C9bFpWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3105939084</pqid></control><display><type>article</type><title>Simultaneous detection of CaMV35S and NOS using fluorescence sensors with dual-emission silver nanoclusters and catalytic hairpin amplification strategy</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Ye, Yongkang ; Zhai, Yinghui ; Zhang, Chenlu ; Li, Xu ; Wang, Shaopeng ; Lu, Yuexi ; Cao, Xiaodong ; He, Shudong ; Zheng, Haisong ; Li, Yunfei ; Tao, Yunlai</creator><creatorcontrib>Ye, Yongkang ; Zhai, Yinghui ; Zhang, Chenlu ; Li, Xu ; Wang, Shaopeng ; Lu, Yuexi ; Cao, Xiaodong ; He, Shudong ; Zheng, Haisong ; Li, Yunfei ; Tao, Yunlai</creatorcontrib><description>A dual-emission fluorescent biosensing method was developed for simultaneous determination of CaMV35S and NOS in genetically modified (GM) plants. Two designed hairpin DNA (H1, H2) sequences were used as templates to synthesize H1-AgNCs (
λ
ex
= 570 nm,
λ
em
= 625 nm) and H2-AgNCs (
λ
ex
= 470 nm,
λ
em
= 555 nm). By using H1-AgNCs and H2-AgNCs as dual-signal tags, combined with signal amplification strategy of magnetic separation to reduce background signal and an enzyme-free catalytic hairpin assembly (CHA) signal amplification strategy, a novel multi-target fluorescent biosensor was fabricated to detect multiple targets based on FRET between signal tags (donors) and magnetic Fe
3
O
4
modified graphene oxide (Fe
3
O
4
@GO, acceptors). In the presence of the target NOS and CaMV35S, the hairpin structures of H1 and H2 can be opened respectively, and the exposed sequences will hybridize with the G-rich hairpin sequences HP1 and HP2 respectively, displacing the target sequences to participate in the next round of CHA cycle. Meanwhile, H1-HP1 and H2-HP2 double-stranded DNA sequences (dsDNA) were formed, resulting in the desorption of dsDNA from the surface of Fe
3
O
4
@GO due to weak π-π interaction between dsDNA and Fe
3
O
4
@GO and leading to the fluorescence recovery of AgNCs. Under optimal conditions, the linear ranges of this fluorescence sensor were 5 ~ 300 nmol L
−1
for NOS and 5 ~ 200 nmol L
−1
CaMV35S, and the LODs were 0.14 nmol L
−1
and 0.18 nmol L
−1
, respectively. In addition, the fluorescence sensor has good selectivity for the detection of NOS and CaMV35S in GM soybean samples, showing the potential applications in GM screening.
Graphical Abstract</description><identifier>ISSN: 0026-3672</identifier><identifier>ISSN: 1436-5073</identifier><identifier>EISSN: 1436-5073</identifier><identifier>DOI: 10.1007/s00604-024-06702-9</identifier><identifier>PMID: 39283340</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Amino Acid Oxidoreductases ; Amplification ; Analytical Chemistry ; Biosensing Techniques - methods ; Biosensors ; Catalysis ; Caulimovirus - genetics ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Emission ; Fluorescence ; Fluorescence Resonance Energy Transfer - methods ; Fluorescent Dyes - chemistry ; Gene sequencing ; Genetic modification ; Graphene ; Graphite - chemistry ; Inverted Repeat Sequences ; Iron oxides ; Limit of Detection ; Magnetic separation ; Metal Nanoparticles - chemistry ; Microengineering ; Nanochemistry ; Nanoclusters ; Nanotechnology ; Nucleic Acid Amplification Techniques - methods ; Plants, Genetically Modified - genetics ; Silver - chemistry ; Tags ; Target detection ; Viral Proteins - chemistry ; Viral Proteins - genetics</subject><ispartof>Mikrochimica acta (1966), 2024-10, Vol.191 (10), p.601, Article 601</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-156586dce115133c85cc0c1c375ee9b2c589b8a186019749d5abf13153b6cbc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00604-024-06702-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00604-024-06702-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39283340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Yongkang</creatorcontrib><creatorcontrib>Zhai, Yinghui</creatorcontrib><creatorcontrib>Zhang, Chenlu</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Wang, Shaopeng</creatorcontrib><creatorcontrib>Lu, Yuexi</creatorcontrib><creatorcontrib>Cao, Xiaodong</creatorcontrib><creatorcontrib>He, Shudong</creatorcontrib><creatorcontrib>Zheng, Haisong</creatorcontrib><creatorcontrib>Li, Yunfei</creatorcontrib><creatorcontrib>Tao, Yunlai</creatorcontrib><title>Simultaneous detection of CaMV35S and NOS using fluorescence sensors with dual-emission silver nanoclusters and catalytic hairpin amplification strategy</title><title>Mikrochimica acta (1966)</title><addtitle>Microchim Acta</addtitle><addtitle>Mikrochim Acta</addtitle><description>A dual-emission fluorescent biosensing method was developed for simultaneous determination of CaMV35S and NOS in genetically modified (GM) plants. Two designed hairpin DNA (H1, H2) sequences were used as templates to synthesize H1-AgNCs (
λ
ex
= 570 nm,
λ
em
= 625 nm) and H2-AgNCs (
λ
ex
= 470 nm,
λ
em
= 555 nm). By using H1-AgNCs and H2-AgNCs as dual-signal tags, combined with signal amplification strategy of magnetic separation to reduce background signal and an enzyme-free catalytic hairpin assembly (CHA) signal amplification strategy, a novel multi-target fluorescent biosensor was fabricated to detect multiple targets based on FRET between signal tags (donors) and magnetic Fe
3
O
4
modified graphene oxide (Fe
3
O
4
@GO, acceptors). In the presence of the target NOS and CaMV35S, the hairpin structures of H1 and H2 can be opened respectively, and the exposed sequences will hybridize with the G-rich hairpin sequences HP1 and HP2 respectively, displacing the target sequences to participate in the next round of CHA cycle. Meanwhile, H1-HP1 and H2-HP2 double-stranded DNA sequences (dsDNA) were formed, resulting in the desorption of dsDNA from the surface of Fe
3
O
4
@GO due to weak π-π interaction between dsDNA and Fe
3
O
4
@GO and leading to the fluorescence recovery of AgNCs. Under optimal conditions, the linear ranges of this fluorescence sensor were 5 ~ 300 nmol L
−1
for NOS and 5 ~ 200 nmol L
−1
CaMV35S, and the LODs were 0.14 nmol L
−1
and 0.18 nmol L
−1
, respectively. In addition, the fluorescence sensor has good selectivity for the detection of NOS and CaMV35S in GM soybean samples, showing the potential applications in GM screening.
Graphical Abstract</description><subject>Amino Acid Oxidoreductases</subject><subject>Amplification</subject><subject>Analytical Chemistry</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Catalysis</subject><subject>Caulimovirus - genetics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Emission</subject><subject>Fluorescence</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Gene sequencing</subject><subject>Genetic modification</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Inverted Repeat Sequences</subject><subject>Iron oxides</subject><subject>Limit of Detection</subject><subject>Magnetic separation</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Microengineering</subject><subject>Nanochemistry</subject><subject>Nanoclusters</subject><subject>Nanotechnology</subject><subject>Nucleic Acid Amplification Techniques - methods</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Silver - chemistry</subject><subject>Tags</subject><subject>Target detection</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - genetics</subject><issn>0026-3672</issn><issn>1436-5073</issn><issn>1436-5073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1TAQhS0EoreFF2CBLLFhE-qf2ImX6IqfSqVd3Jat5TiTW1eOc7Ed0H0THhenKSCxYDHyYr5zZjwHoVeUvKOENOeJEEnqirBSsiGsUk_QhtZcVoI0_CnaEMJkxWXDTtBpSveE0Eay-jk64Yq1nNdkg37u3Dj7bAJMc8I9ZLDZTQFPA96aL1-52GETenx1vcNzcmGPBz9PEZKFYAEnCGmKCf9w-Q73s_EVjC6lxSA5_x0iDiZM1s8pQ8EWJ2uy8cfsLL4zLh5cwGY8eDe40njQ5Wgy7I8v0LPB-AQvH98zdPvxw832c3V5_eli-_6yskzIXFEhRSt7C5QKyrlthbXEUssbAaA6ZkWrutbQVhKqmlr1wnQD5VTwTtrONvwMvV19D3H6NkPKuvzAgvfrSTSny5FrUYuCvvkHvZ_mGMp2CyUUV6StC8VWysYppQiDPkQ3mnjUlOglN73mpktu-iE3rYro9aP13I3Q_5H8DqoAfAVSaYU9xL-z_2P7C9bFpWA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Ye, Yongkang</creator><creator>Zhai, Yinghui</creator><creator>Zhang, Chenlu</creator><creator>Li, Xu</creator><creator>Wang, Shaopeng</creator><creator>Lu, Yuexi</creator><creator>Cao, Xiaodong</creator><creator>He, Shudong</creator><creator>Zheng, Haisong</creator><creator>Li, Yunfei</creator><creator>Tao, Yunlai</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20241001</creationdate><title>Simultaneous detection of CaMV35S and NOS using fluorescence sensors with dual-emission silver nanoclusters and catalytic hairpin amplification strategy</title><author>Ye, Yongkang ; Zhai, Yinghui ; Zhang, Chenlu ; Li, Xu ; Wang, Shaopeng ; Lu, Yuexi ; Cao, Xiaodong ; He, Shudong ; Zheng, Haisong ; Li, Yunfei ; Tao, Yunlai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-156586dce115133c85cc0c1c375ee9b2c589b8a186019749d5abf13153b6cbc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino Acid Oxidoreductases</topic><topic>Amplification</topic><topic>Analytical Chemistry</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Catalysis</topic><topic>Caulimovirus - genetics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Emission</topic><topic>Fluorescence</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Gene sequencing</topic><topic>Genetic modification</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Inverted Repeat Sequences</topic><topic>Iron oxides</topic><topic>Limit of Detection</topic><topic>Magnetic separation</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Microengineering</topic><topic>Nanochemistry</topic><topic>Nanoclusters</topic><topic>Nanotechnology</topic><topic>Nucleic Acid Amplification Techniques - methods</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Silver - chemistry</topic><topic>Tags</topic><topic>Target detection</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Yongkang</creatorcontrib><creatorcontrib>Zhai, Yinghui</creatorcontrib><creatorcontrib>Zhang, Chenlu</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Wang, Shaopeng</creatorcontrib><creatorcontrib>Lu, Yuexi</creatorcontrib><creatorcontrib>Cao, Xiaodong</creatorcontrib><creatorcontrib>He, Shudong</creatorcontrib><creatorcontrib>Zheng, Haisong</creatorcontrib><creatorcontrib>Li, Yunfei</creatorcontrib><creatorcontrib>Tao, Yunlai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Mikrochimica acta (1966)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Yongkang</au><au>Zhai, Yinghui</au><au>Zhang, Chenlu</au><au>Li, Xu</au><au>Wang, Shaopeng</au><au>Lu, Yuexi</au><au>Cao, Xiaodong</au><au>He, Shudong</au><au>Zheng, Haisong</au><au>Li, Yunfei</au><au>Tao, Yunlai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous detection of CaMV35S and NOS using fluorescence sensors with dual-emission silver nanoclusters and catalytic hairpin amplification strategy</atitle><jtitle>Mikrochimica acta (1966)</jtitle><stitle>Microchim Acta</stitle><addtitle>Mikrochim Acta</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>191</volume><issue>10</issue><spage>601</spage><pages>601-</pages><artnum>601</artnum><issn>0026-3672</issn><issn>1436-5073</issn><eissn>1436-5073</eissn><abstract>A dual-emission fluorescent biosensing method was developed for simultaneous determination of CaMV35S and NOS in genetically modified (GM) plants. Two designed hairpin DNA (H1, H2) sequences were used as templates to synthesize H1-AgNCs (
λ
ex
= 570 nm,
λ
em
= 625 nm) and H2-AgNCs (
λ
ex
= 470 nm,
λ
em
= 555 nm). By using H1-AgNCs and H2-AgNCs as dual-signal tags, combined with signal amplification strategy of magnetic separation to reduce background signal and an enzyme-free catalytic hairpin assembly (CHA) signal amplification strategy, a novel multi-target fluorescent biosensor was fabricated to detect multiple targets based on FRET between signal tags (donors) and magnetic Fe
3
O
4
modified graphene oxide (Fe
3
O
4
@GO, acceptors). In the presence of the target NOS and CaMV35S, the hairpin structures of H1 and H2 can be opened respectively, and the exposed sequences will hybridize with the G-rich hairpin sequences HP1 and HP2 respectively, displacing the target sequences to participate in the next round of CHA cycle. Meanwhile, H1-HP1 and H2-HP2 double-stranded DNA sequences (dsDNA) were formed, resulting in the desorption of dsDNA from the surface of Fe
3
O
4
@GO due to weak π-π interaction between dsDNA and Fe
3
O
4
@GO and leading to the fluorescence recovery of AgNCs. Under optimal conditions, the linear ranges of this fluorescence sensor were 5 ~ 300 nmol L
−1
for NOS and 5 ~ 200 nmol L
−1
CaMV35S, and the LODs were 0.14 nmol L
−1
and 0.18 nmol L
−1
, respectively. In addition, the fluorescence sensor has good selectivity for the detection of NOS and CaMV35S in GM soybean samples, showing the potential applications in GM screening.
Graphical Abstract</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>39283340</pmid><doi>10.1007/s00604-024-06702-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-3672 |
ispartof | Mikrochimica acta (1966), 2024-10, Vol.191 (10), p.601, Article 601 |
issn | 0026-3672 1436-5073 1436-5073 |
language | eng |
recordid | cdi_proquest_miscellaneous_3106044545 |
source | MEDLINE; SpringerNature Journals |
subjects | Amino Acid Oxidoreductases Amplification Analytical Chemistry Biosensing Techniques - methods Biosensors Catalysis Caulimovirus - genetics Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Emission Fluorescence Fluorescence Resonance Energy Transfer - methods Fluorescent Dyes - chemistry Gene sequencing Genetic modification Graphene Graphite - chemistry Inverted Repeat Sequences Iron oxides Limit of Detection Magnetic separation Metal Nanoparticles - chemistry Microengineering Nanochemistry Nanoclusters Nanotechnology Nucleic Acid Amplification Techniques - methods Plants, Genetically Modified - genetics Silver - chemistry Tags Target detection Viral Proteins - chemistry Viral Proteins - genetics |
title | Simultaneous detection of CaMV35S and NOS using fluorescence sensors with dual-emission silver nanoclusters and catalytic hairpin amplification strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20detection%20of%20CaMV35S%20and%20NOS%20using%20fluorescence%20sensors%20with%20dual-emission%20silver%20nanoclusters%20and%20catalytic%20hairpin%20amplification%20strategy&rft.jtitle=Mikrochimica%20acta%20(1966)&rft.au=Ye,%20Yongkang&rft.date=2024-10-01&rft.volume=191&rft.issue=10&rft.spage=601&rft.pages=601-&rft.artnum=601&rft.issn=0026-3672&rft.eissn=1436-5073&rft_id=info:doi/10.1007/s00604-024-06702-9&rft_dat=%3Cproquest_cross%3E3105939084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3105939084&rft_id=info:pmid/39283340&rfr_iscdi=true |