Predicting axillary response to neoadjuvant chemotherapy using peritumoral and intratumoral ultrasound radiomics in breast cancer subtypes

To explore machine learning (ML)-based breast tumor peritumoral (P) and intratumoral ultrasound radiomics signatures (IURS) for predicting axillary response to neoadjuvant chemotherapy (NAC) in patients with breast cancer (BC) with node-positive. A total of 435 patients were divided into hormone rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:iScience 2024-09, Vol.27 (9), p.110716, Article 110716
Hauptverfasser: Yao, Jiejie, Jia, Xiaohong, Zhou, Wei, Zhu, Ying, Chen, Xiaosong, Zhan, Weiwei, Zhou, Jianqiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To explore machine learning (ML)-based breast tumor peritumoral (P) and intratumoral ultrasound radiomics signatures (IURS) for predicting axillary response to neoadjuvant chemotherapy (NAC) in patients with breast cancer (BC) with node-positive. A total of 435 patients were divided into hormone receptor (HR)+/human epidermal growth factor receptor (HER)2-, HER2+, and triple-negative (TN) subtypes. ML classifiers including random forest (RF), support vector machine (SVM), and linear discriminant analysis (LDA) were applied to construct PURS, IURS, and the combined P-IURS radiomics models. SVM of the TN subtype obtained the most favorable performance with an AUC of 0.917 (95%CI: 0.859, 0.960) in PURS models, RF of the HER2+ subtype yielded the highest efficacy in IURS models [AUC = 0.935 (95%CI: 0.843, 0.976)]. The RF-based combined P-IURS model of the HER2+ subtype improved the efficacy to a maximum AUC of 0.952 (95%CI: 0.868, 0.994). ML-based US radiomics can be a promising biomarker to predict axillary response. [Display omitted] •Axillary response to NAC is an important indicator for predicting prognosis•This study constructed PURS, IURS, and the combined P-IURS predictive models•The RF-based combined P-IURS model in the HER2+ subtype achieved the highest performance•ML-based US radiomics can be a promising biomarker to help clinical strategies Bioinformatics; Cancer
ISSN:2589-0042
2589-0042
DOI:10.1016/j.isci.2024.110716