Enhanced Buried Interface Engineering for Efficient Inverted Perovskite Solar Cells Fabricated via Vapor-Solid Reaction
Vapor-deposited inverted perovskite solar cells utilizing self-assembled monolayer (SAM) as hole transport material have gained significant attention for their high efficiencies and compatibility with silicon/perovskite monolithic tandem devices. However, as a small molecule, the SAM layer suffers l...
Gespeichert in:
Veröffentlicht in: | Small methods 2024-09, p.e2401339 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | e2401339 |
container_title | Small methods |
container_volume | |
creator | Dou, Yichen Lv, Pin Yuan, Zhangwei Xiong, Wenjuan Liang, Jiace Peng, Yong Liang, Guijie Ku, Zhiliang |
description | Vapor-deposited inverted perovskite solar cells utilizing self-assembled monolayer (SAM) as hole transport material have gained significant attention for their high efficiencies and compatibility with silicon/perovskite monolithic tandem devices. However, as a small molecule, the SAM layer suffers low thermal tolerance in comparison with other metal oxide or polymers, rendering poor efficiency in solar device with high-temperature (> 160 °C) fabricating procedures. In this study, a dual modification approach involving AlO
and F-doped phenyltrimethylammonium bromide (F-PTABr) layers is introduced to enhance the buried interface. The AlO
dielectric layer improves the interface contact and prevents the upward diffusion of SAM molecules during the vapor-solid reaction at 170 °C, while the F-PTABr layer regulates crystal growth and reduces the interfacial defects. As a result, the AlO
/F-PTABr-treated perovskite film exhibits a homogeneous, pinhole-free morphology with improved crystal quality compared to the control films. This leads to a champion power conversion efficiency of 21.53% for the inverted perovskite solar cells. Moreover, the encapsulated devices maintained 90% of the initial efficiency after 600 h of ageing at 85 °C in air, demonstrating promising potential for silicon/perovskite tandem application. |
doi_str_mv | 10.1002/smtd.202401339 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3105493110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3105493110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-ff0c0cbb7bdf7c96128193f37fa978b4f4ad4848837fb0f9154ab25bb13538e83</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMottRePUqOXrYmm_1IjlpaLRQUv65Lkp3U6DZbk92K_70p1uLpDcPvPWYeQueUTCgh6VVYd_UkJWlGKGPiCA1TVhSJKAg__jcP0DiEdxINEctTeooGTKSlyItyiL5m7k06DTW-6b2NsnAdeCM14JlbWQfgrVth03o8M8ZqC66LzBZ8F-EH8O02fNgO8FPbSI-n0DQBz6XyVssdsbUSv8pN65MI2Bo_gtSdbd0ZOjGyCTDe6wi9zGfP07tkeX-7mF4vE0056RJjiCZaqVLVptSioCmnghlWGilKrjKTyTrjGedxo4gRNM-kSnOl4qeMA2cjdPmbu_HtZw-hq9Y26HildND2oWKU5JlglJKITn5R7dsQPJhq4-1a-u-KkmrXd7Xruzr0HQ0X--xeraE-4H_tsh-Ti3zS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3105493110</pqid></control><display><type>article</type><title>Enhanced Buried Interface Engineering for Efficient Inverted Perovskite Solar Cells Fabricated via Vapor-Solid Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dou, Yichen ; Lv, Pin ; Yuan, Zhangwei ; Xiong, Wenjuan ; Liang, Jiace ; Peng, Yong ; Liang, Guijie ; Ku, Zhiliang</creator><creatorcontrib>Dou, Yichen ; Lv, Pin ; Yuan, Zhangwei ; Xiong, Wenjuan ; Liang, Jiace ; Peng, Yong ; Liang, Guijie ; Ku, Zhiliang</creatorcontrib><description>Vapor-deposited inverted perovskite solar cells utilizing self-assembled monolayer (SAM) as hole transport material have gained significant attention for their high efficiencies and compatibility with silicon/perovskite monolithic tandem devices. However, as a small molecule, the SAM layer suffers low thermal tolerance in comparison with other metal oxide or polymers, rendering poor efficiency in solar device with high-temperature (> 160 °C) fabricating procedures. In this study, a dual modification approach involving AlO
and F-doped phenyltrimethylammonium bromide (F-PTABr) layers is introduced to enhance the buried interface. The AlO
dielectric layer improves the interface contact and prevents the upward diffusion of SAM molecules during the vapor-solid reaction at 170 °C, while the F-PTABr layer regulates crystal growth and reduces the interfacial defects. As a result, the AlO
/F-PTABr-treated perovskite film exhibits a homogeneous, pinhole-free morphology with improved crystal quality compared to the control films. This leads to a champion power conversion efficiency of 21.53% for the inverted perovskite solar cells. Moreover, the encapsulated devices maintained 90% of the initial efficiency after 600 h of ageing at 85 °C in air, demonstrating promising potential for silicon/perovskite tandem application.</description><identifier>ISSN: 2366-9608</identifier><identifier>EISSN: 2366-9608</identifier><identifier>DOI: 10.1002/smtd.202401339</identifier><identifier>PMID: 39279567</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Small methods, 2024-09, p.e2401339</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-ff0c0cbb7bdf7c96128193f37fa978b4f4ad4848837fb0f9154ab25bb13538e83</cites><orcidid>0000-0002-5363-378X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39279567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dou, Yichen</creatorcontrib><creatorcontrib>Lv, Pin</creatorcontrib><creatorcontrib>Yuan, Zhangwei</creatorcontrib><creatorcontrib>Xiong, Wenjuan</creatorcontrib><creatorcontrib>Liang, Jiace</creatorcontrib><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Liang, Guijie</creatorcontrib><creatorcontrib>Ku, Zhiliang</creatorcontrib><title>Enhanced Buried Interface Engineering for Efficient Inverted Perovskite Solar Cells Fabricated via Vapor-Solid Reaction</title><title>Small methods</title><addtitle>Small Methods</addtitle><description>Vapor-deposited inverted perovskite solar cells utilizing self-assembled monolayer (SAM) as hole transport material have gained significant attention for their high efficiencies and compatibility with silicon/perovskite monolithic tandem devices. However, as a small molecule, the SAM layer suffers low thermal tolerance in comparison with other metal oxide or polymers, rendering poor efficiency in solar device with high-temperature (> 160 °C) fabricating procedures. In this study, a dual modification approach involving AlO
and F-doped phenyltrimethylammonium bromide (F-PTABr) layers is introduced to enhance the buried interface. The AlO
dielectric layer improves the interface contact and prevents the upward diffusion of SAM molecules during the vapor-solid reaction at 170 °C, while the F-PTABr layer regulates crystal growth and reduces the interfacial defects. As a result, the AlO
/F-PTABr-treated perovskite film exhibits a homogeneous, pinhole-free morphology with improved crystal quality compared to the control films. This leads to a champion power conversion efficiency of 21.53% for the inverted perovskite solar cells. Moreover, the encapsulated devices maintained 90% of the initial efficiency after 600 h of ageing at 85 °C in air, demonstrating promising potential for silicon/perovskite tandem application.</description><issn>2366-9608</issn><issn>2366-9608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LAzEQxYMottRePUqOXrYmm_1IjlpaLRQUv65Lkp3U6DZbk92K_70p1uLpDcPvPWYeQueUTCgh6VVYd_UkJWlGKGPiCA1TVhSJKAg__jcP0DiEdxINEctTeooGTKSlyItyiL5m7k06DTW-6b2NsnAdeCM14JlbWQfgrVth03o8M8ZqC66LzBZ8F-EH8O02fNgO8FPbSI-n0DQBz6XyVssdsbUSv8pN65MI2Bo_gtSdbd0ZOjGyCTDe6wi9zGfP07tkeX-7mF4vE0056RJjiCZaqVLVptSioCmnghlWGilKrjKTyTrjGedxo4gRNM-kSnOl4qeMA2cjdPmbu_HtZw-hq9Y26HildND2oWKU5JlglJKITn5R7dsQPJhq4-1a-u-KkmrXd7Xruzr0HQ0X--xeraE-4H_tsh-Ti3zS</recordid><startdate>20240916</startdate><enddate>20240916</enddate><creator>Dou, Yichen</creator><creator>Lv, Pin</creator><creator>Yuan, Zhangwei</creator><creator>Xiong, Wenjuan</creator><creator>Liang, Jiace</creator><creator>Peng, Yong</creator><creator>Liang, Guijie</creator><creator>Ku, Zhiliang</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5363-378X</orcidid></search><sort><creationdate>20240916</creationdate><title>Enhanced Buried Interface Engineering for Efficient Inverted Perovskite Solar Cells Fabricated via Vapor-Solid Reaction</title><author>Dou, Yichen ; Lv, Pin ; Yuan, Zhangwei ; Xiong, Wenjuan ; Liang, Jiace ; Peng, Yong ; Liang, Guijie ; Ku, Zhiliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-ff0c0cbb7bdf7c96128193f37fa978b4f4ad4848837fb0f9154ab25bb13538e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dou, Yichen</creatorcontrib><creatorcontrib>Lv, Pin</creatorcontrib><creatorcontrib>Yuan, Zhangwei</creatorcontrib><creatorcontrib>Xiong, Wenjuan</creatorcontrib><creatorcontrib>Liang, Jiace</creatorcontrib><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Liang, Guijie</creatorcontrib><creatorcontrib>Ku, Zhiliang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Small methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dou, Yichen</au><au>Lv, Pin</au><au>Yuan, Zhangwei</au><au>Xiong, Wenjuan</au><au>Liang, Jiace</au><au>Peng, Yong</au><au>Liang, Guijie</au><au>Ku, Zhiliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Buried Interface Engineering for Efficient Inverted Perovskite Solar Cells Fabricated via Vapor-Solid Reaction</atitle><jtitle>Small methods</jtitle><addtitle>Small Methods</addtitle><date>2024-09-16</date><risdate>2024</risdate><spage>e2401339</spage><pages>e2401339-</pages><issn>2366-9608</issn><eissn>2366-9608</eissn><abstract>Vapor-deposited inverted perovskite solar cells utilizing self-assembled monolayer (SAM) as hole transport material have gained significant attention for their high efficiencies and compatibility with silicon/perovskite monolithic tandem devices. However, as a small molecule, the SAM layer suffers low thermal tolerance in comparison with other metal oxide or polymers, rendering poor efficiency in solar device with high-temperature (> 160 °C) fabricating procedures. In this study, a dual modification approach involving AlO
and F-doped phenyltrimethylammonium bromide (F-PTABr) layers is introduced to enhance the buried interface. The AlO
dielectric layer improves the interface contact and prevents the upward diffusion of SAM molecules during the vapor-solid reaction at 170 °C, while the F-PTABr layer regulates crystal growth and reduces the interfacial defects. As a result, the AlO
/F-PTABr-treated perovskite film exhibits a homogeneous, pinhole-free morphology with improved crystal quality compared to the control films. This leads to a champion power conversion efficiency of 21.53% for the inverted perovskite solar cells. Moreover, the encapsulated devices maintained 90% of the initial efficiency after 600 h of ageing at 85 °C in air, demonstrating promising potential for silicon/perovskite tandem application.</abstract><cop>Germany</cop><pmid>39279567</pmid><doi>10.1002/smtd.202401339</doi><orcidid>https://orcid.org/0000-0002-5363-378X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2366-9608 |
ispartof | Small methods, 2024-09, p.e2401339 |
issn | 2366-9608 2366-9608 |
language | eng |
recordid | cdi_proquest_miscellaneous_3105493110 |
source | Wiley Online Library Journals Frontfile Complete |
title | Enhanced Buried Interface Engineering for Efficient Inverted Perovskite Solar Cells Fabricated via Vapor-Solid Reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Buried%20Interface%20Engineering%20for%20Efficient%20Inverted%20Perovskite%20Solar%20Cells%20Fabricated%20via%20Vapor-Solid%20Reaction&rft.jtitle=Small%20methods&rft.au=Dou,%20Yichen&rft.date=2024-09-16&rft.spage=e2401339&rft.pages=e2401339-&rft.issn=2366-9608&rft.eissn=2366-9608&rft_id=info:doi/10.1002/smtd.202401339&rft_dat=%3Cproquest_cross%3E3105493110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3105493110&rft_id=info:pmid/39279567&rfr_iscdi=true |