Enhanced Buried Interface Engineering for Efficient Inverted Perovskite Solar Cells Fabricated via Vapor-Solid Reaction

Vapor-deposited inverted perovskite solar cells utilizing self-assembled monolayer (SAM) as hole transport material have gained significant attention for their high efficiencies and compatibility with silicon/perovskite monolithic tandem devices. However, as a small molecule, the SAM layer suffers l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small methods 2024-09, p.e2401339
Hauptverfasser: Dou, Yichen, Lv, Pin, Yuan, Zhangwei, Xiong, Wenjuan, Liang, Jiace, Peng, Yong, Liang, Guijie, Ku, Zhiliang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vapor-deposited inverted perovskite solar cells utilizing self-assembled monolayer (SAM) as hole transport material have gained significant attention for their high efficiencies and compatibility with silicon/perovskite monolithic tandem devices. However, as a small molecule, the SAM layer suffers low thermal tolerance in comparison with other metal oxide or polymers, rendering poor efficiency in solar device with high-temperature (> 160 °C) fabricating procedures. In this study, a dual modification approach involving AlO and F-doped phenyltrimethylammonium bromide (F-PTABr) layers is introduced to enhance the buried interface. The AlO dielectric layer improves the interface contact and prevents the upward diffusion of SAM molecules during the vapor-solid reaction at 170 °C, while the F-PTABr layer regulates crystal growth and reduces the interfacial defects. As a result, the AlO /F-PTABr-treated perovskite film exhibits a homogeneous, pinhole-free morphology with improved crystal quality compared to the control films. This leads to a champion power conversion efficiency of 21.53% for the inverted perovskite solar cells. Moreover, the encapsulated devices maintained 90% of the initial efficiency after 600 h of ageing at 85 °C in air, demonstrating promising potential for silicon/perovskite tandem application.
ISSN:2366-9608
2366-9608
DOI:10.1002/smtd.202401339