Construction of chitosan/carboxylated polyvinyl alcohol/poly(N-isopropylacrylamide) composite antibacterial hydrogel for rapid wound healing

In the realm of skin injury management, the expedited closure of wounds, prevention of scar formation, and enhancement of the healing process are of critical significance. The creation of economical dressings that effectively facilitate swift wound sealing in the initial phase of skin trauma while c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials advances 2025-01, Vol.166, p.214041, Article 214041
Hauptverfasser: Hong, RuChen, Lai, Jun, Mai, DongYi, Li, Lan, Dai, LiJun, Lu, YanJin, Lin, JinXin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the realm of skin injury management, the expedited closure of wounds, prevention of scar formation, and enhancement of the healing process are of critical significance. The creation of economical dressings that effectively facilitate swift wound sealing in the initial phase of skin trauma while curbing scar development represents a promising avenue for clinical utility. Within the context of this investigation, we synthesized a novel hydrogel composed of chitosan (CS), carboxylated poly(vinyl alcohol) (PVA-COOH) via a Schiff base reaction between carboxylated PVA and chitosan, yielding networks abundant in amide bonds. Following this, a chitosan/carboxylated PVA/poly(N-isopropylacrylamide) hydrogel (CNP) was engineered by incorporating poly-N-isopropylacrylamide chains for interpenetration at ambient temperature. Our findings indicate that the CNP hydrogel exhibits favorable degradability and swelling characteristics. Moreover, it possesses favorable antimicrobial efficacy and biocompatibility. In a murine full-thickness skin injury model, the hydrogel was found to expedite wound healing by augmenting granulation tissue formation, mitigating wound inflammation, and promoting angiogenesis. •Innovative CS/PVA-COOH hydrogel with amide-rich network for wound closure.•CNP hydrogel has certain adhesion and can be used as wound dressing.•Demonstrates rapid degradation, hygroscopic, and antimicrobial activity.•Biocompatible; promotes granulation, reduces inflammation, and angiogenesis in vivo.
ISSN:2772-9508
2772-9508
DOI:10.1016/j.bioadv.2024.214041