Eutrophication-induced shifts cause diverse responses in the phoD community of a plateau freshwater lake
Eutrophication is a critical environmental challenge affecting lakes globally. Mitigating trophic level under endogenous phosphorus release is an unsolved problem in eutrophic lakes. However, understanding the dynamics and assembly of microbial communities encoding the alkaline phosphatase (phoD com...
Gespeichert in:
Veröffentlicht in: | Environmental research 2024-12, Vol.263 (Pt 1), p.119947, Article 119947 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Eutrophication is a critical environmental challenge affecting lakes globally. Mitigating trophic level under endogenous phosphorus release is an unsolved problem in eutrophic lakes. However, understanding the dynamics and assembly of microbial communities encoding the alkaline phosphatase (phoD community) and their responses during trophic transitions in eutrophic lakes is limited. In this study, we compared the composition and assembly mechanisms of phoD communities in four seasons in the Yilong Lake, a shallow lake of the Yunnan-Guizhou Plateau. The lake exhibits slightly eutrophic conditions in summer and mesotrophic conditions in spring, autumn, and winter. By analyzing seasonal variations, we observed that during summer, the relative abundance of Pseudomonas in the water had the highest value, while the Shannon-Wiener index of phoD communities was lowest. Mantel tests showed an increased Bray-Curtis dissimilarity of phoD communities in the water with rising eutrophication, a trend not observed in sediment. Notably, eutrophication heightened the homogeneity selection governing the assembly of phoD communities in water. The co-occurrence networks showed that the OTUs in the summer exhibited closer interconnections than those in other seasons. Additionally, the topological parameters from networks indicated that eutrophication is poised to instigate changes and modulate the dynamics of the microbial phoD community, resulting in markedly distinct seasonal behaviors. pH was identified as a critical factor directly influencing phoD community diversity via partial least squares path modeling (PLS-PM). This study shed light on our understanding of the seasonal dynamics of phoD communities and their pivotal role in phosphorus cycling in eutrophic lakes.
[Display omitted]
•Pseudomonas abundance peaked in slightly eutrophic water.•Eutrophication boosted deterministic phoD community assembly in water and sediment.•Eutrophic OTUs more interconnected in water co-occurrence network, not sediment.•pH and temperature were found to significantly influence the phoD community. |
---|---|
ISSN: | 0013-9351 1096-0953 1096-0953 |
DOI: | 10.1016/j.envres.2024.119947 |