Revitalizing biopolymers to prepare temperature-resistant and salt-tolerant filtrate reducer by combining light-driven lignin depolymerization and subsequent photopolymerization on MIL-100(Fe)-NH2(20) photocatalyst
For the first time, this study integrate the light-driven depolymerization/activation of industrial grade sodium lignosulfonate and its subsequent photo-induced radical polymerization with acrylamide (AM) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) into one-pot using MIL-100(Fe)-NH2(20) as...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-11, Vol.279 (Pt 4), p.135492, Article 135492 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the first time, this study integrate the light-driven depolymerization/activation of industrial grade sodium lignosulfonate and its subsequent photo-induced radical polymerization with acrylamide (AM) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) into one-pot using MIL-100(Fe)-NH2(20) as a photocatalyst to synthesize fluid loss agent LSMP. Due to the significant hydrogen bonding effect, the agent owns excellent rheological and filtration properties. The filtrate volumes of drilling fluids containing 2.0 wt% agent before and after aging at 150 °C are only 3.6 and 4.6 mL, reducing by 85.0 % and 88.5 %, respectively, compared with pure fluids. Even at high temperatures and high salinity, LSMP still gives stunning performances with significant filtrate volumes decline of 96.58 % and 86.52 % under erosion of 25 wt% NaCl and 2.0 wt% CaCl2, separately. Meanwhile, the filtration reduction mechanism of LSMP is presented, and the probable photocatalytic mechanism is also explored: 1, under depolymerization process, the selective cleavage of ubiquitous C − O/C − C linkage bonds (β-O-4, β-5, α-O-4, β-β, 4-O-5, β-1, dibenzodioxocin, etc.) occur, accompanied by the aromatic rings intact; 2, with the action of photo-induced carriers generated on MIL-100(Fe)-NH2(20), absorbed photons are transformed into thermal energy and the radical polymerization of green synthesis are ultimately achieved.
•Synthesized a hierarchical mesoporous MIL-100(Fe)-NH2(20) photocatalyst with higher sunlight utilization, faster charge transfer efficiency and stronger redox ability.•For the first time, the selective photo-cleavage of actual industrial-grade sodium lignosulfonate and its subsequent polymerization with AM and AMPS were integrated into one pot with sharing the same photocatalyst.•The ingenious solar-thermal conversion have guaranteed mild reaction conditions, obtaining the temperature- and salt-resistant polymer fluid loss agent (LSMP).•The mechanisms (selective cleavage of Cα−Cβ and Cβ−OAr bonds, free radical polymerization and filtration loss) were further explored. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.135492 |