Block Index for Characterizing Olefin Block Copolymers

Olefin block copolymers produced by chain shuttling catalysis exhibit crystallinity characteristics that are distinct from what would be expected for typical random olefin copolymers with comparable monomer compositions produced from either 'single-site' or heterogeneous catalysis. Olefin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular symposia 2007-11, Vol.257 (1), p.80-93
Hauptverfasser: Shan, Colin Li Pi, Hazlitt, Lonnie G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Olefin block copolymers produced by chain shuttling catalysis exhibit crystallinity characteristics that are distinct from what would be expected for typical random olefin copolymers with comparable monomer compositions produced from either 'single-site' or heterogeneous catalysis. Olefin block copolymers produced by chain shuttling catalysis have a statistical multiblock architecture. A unique structural feature of olefin-based block copolymers is that the intra-chain distribution of comonomer is segmented (statistically non-random). Fractionating an olefin block copolymer by preparative temperature rising elution fractionation, TREF, results in fractions that have much higher comonomer content than comparable fractions of a random copolymer collected at an equivalent TREF elution temperature. We have developed a "block index" methodology which quantifies the deviation from the expected monomer composition versus the analytical temperature rising elution fractionation, ATREF, elution temperature. When interpreted properly, this index indicates the degree to which the intra-chain comonomer distribution is segmented or blocked. The unique crystallization behavior of block copolymers determine the magnitude of the block index values because the highly crystalline segments along an otherwise non-crystalline chain tend to dominate the ATREF (and DSC) temperature distributions.
ISSN:1022-1360
1521-3900
DOI:10.1002/masy.200751107