Prediction of Glass Transition Temperature of Polymers Using Simple Machine Learning

Polymer materials have garnered significant attention due to their exceptional mechanical properties and diverse industrial applications. Understanding the glass transition temperature ( ) of polymers is critical to prevent operational failures at specific temperatures. Traditional methods for measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2024-08, Vol.16 (17), p.2464
Hauptverfasser: Fatriansyah, Jaka Fajar, Linuwih, Baiq Diffa Pakarti, Andreano, Yossi, Sari, Intan Septia, Federico, Andreas, Anis, Muhammad, Surip, Siti Norasmah, Jaafar, Mariatti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polymer materials have garnered significant attention due to their exceptional mechanical properties and diverse industrial applications. Understanding the glass transition temperature ( ) of polymers is critical to prevent operational failures at specific temperatures. Traditional methods for measuring , such as differential scanning calorimetry (DSC) and dynamic mechanical analysis, while accurate, are often time-consuming, costly, and susceptible to inaccuracies due to random and uncertain factors. To address these limitations, the aim of the present study is to investigate the potential of Simplified Molecular Input Line Entry System (SMILES) as descriptors in simple machine learning models to predict efficiently and reliably. Five models were utilized: k-nearest neighbors (KNNs), support vector regression (SVR), extreme gradient boosting (XGBoost), artificial neural network (ANN), and recurrent neural network (RNN). SMILES descriptors were converted into numerical data using either One Hot Encoding (OHE) or Natural Language Processing (NLP). The study found that SMILES inputs with fewer than 200 characters were inadequate for accurately describing compound structures, while inputs exceeding 200 characters diminished model performance due to the curse of dimensionality. The ANN model achieved the highest R value of 0.79; however, the XGB model, with an R value of 0.774, exhibited the highest stability and shorter training times compared to other models, making it the preferred choice for prediction. The efficiency of the OHE method over NLP was demonstrated by faster training times across the KNN, SVR, XGB, and ANN models. Validation of new polymer data showed the XGB model's robustness, with an average prediction deviation of 9.76 from actual values. These findings underscore the importance of optimizing SMILES conversion methods and model parameters to enhance prediction reliability. Future research should focus on improving model accuracy and generalizability by incorporating additional features and advanced techniques. This study contributes to the development of efficient and reliable predictive models for polymer properties, facilitating the design and application of new polymer materials.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16172464