Wavefront sensing with optical differentiation powered by deep learning

We report the experimental demonstration of an optical differentiation wavefront sensor (ODWS) based on binary pixelated linear and nonlinear amplitude filtering in the far-field. We trained and tested a convolutional neural network that reconstructs the spatial phase map from nonlinear-filter-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2024-09, Vol.49 (18), p.5216
Hauptverfasser: Swain, Biswa R, Akif Qadeer, M, Dorrer, Christophe, Narayanan, Renuka Manjula, Rolland, Jannick P, Qiao, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page 5216
container_title Optics letters
container_volume 49
creator Swain, Biswa R
Akif Qadeer, M
Dorrer, Christophe
Narayanan, Renuka Manjula
Rolland, Jannick P
Qiao, Jie
description We report the experimental demonstration of an optical differentiation wavefront sensor (ODWS) based on binary pixelated linear and nonlinear amplitude filtering in the far-field. We trained and tested a convolutional neural network that reconstructs the spatial phase map from nonlinear-filter-based ODWS data for which an analytic reconstruction algorithm is not available. It shows accurate zonal retrieval over different magnitudes of wavefronts and on randomly shaped wavefronts. This work paves the way for the implementation of simultaneously sensitive, high dynamic range, and high-resolution wavefront sensing.
doi_str_mv 10.1364/OL.530559
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3104537717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104537717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-628148d295525fe9efc02bdc939840faa577235e710a4d7b50f086fd8e0692603</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFK3Vg39AAl70kDr7nT1K0SoEelE8hk0yqylpEncTS_-9Ka0ePA0Dz7wMLyFXFGaUK3G_TGeSg5TmiEyo5CYW2ohjMgEqVGykYWfkPIQVACjN-Sk544ZpYMpMyOLdfqPzbdNHAZtQNR_Rpuo_o7brq8LWUVk5hx6bvrJ91TZR127GtYzybVQidlGN1jfj1QU5cbYOeHmYU_L29Pg6f47T5eJl_pDGBQPex4olVCQlM1Iy6dCgK4DlZWG4SQQ4a6XWjEvUFKwodS7BQaJcmSAowxTwKbnd53a-_Row9Nm6CgXWtW2wHULGKQjJtaZ6pDf_6KodfDN-t1OKCQ6MjepurwrfhuDRZZ2v1tZvMwrZrt1smWb7dkd7fUgc8jWWf_K3Tv4DzpRy8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106243022</pqid></control><display><type>article</type><title>Wavefront sensing with optical differentiation powered by deep learning</title><source>Optica Publishing Group Journals</source><creator>Swain, Biswa R ; Akif Qadeer, M ; Dorrer, Christophe ; Narayanan, Renuka Manjula ; Rolland, Jannick P ; Qiao, Jie</creator><creatorcontrib>Swain, Biswa R ; Akif Qadeer, M ; Dorrer, Christophe ; Narayanan, Renuka Manjula ; Rolland, Jannick P ; Qiao, Jie</creatorcontrib><description>We report the experimental demonstration of an optical differentiation wavefront sensor (ODWS) based on binary pixelated linear and nonlinear amplitude filtering in the far-field. We trained and tested a convolutional neural network that reconstructs the spatial phase map from nonlinear-filter-based ODWS data for which an analytic reconstruction algorithm is not available. It shows accurate zonal retrieval over different magnitudes of wavefronts and on randomly shaped wavefronts. This work paves the way for the implementation of simultaneously sensitive, high dynamic range, and high-resolution wavefront sensing.</description><identifier>ISSN: 0146-9592</identifier><identifier>ISSN: 1539-4794</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.530559</identifier><identifier>PMID: 39270269</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Algorithms ; Artificial neural networks ; Differentiation ; Machine learning ; Wave front sensors ; Wave fronts</subject><ispartof>Optics letters, 2024-09, Vol.49 (18), p.5216</ispartof><rights>Copyright Optical Society of America Sep 15, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c203t-628148d295525fe9efc02bdc939840faa577235e710a4d7b50f086fd8e0692603</cites><orcidid>0009-0007-6597-5254 ; 0000-0002-5374-5394 ; 0000-0003-2747-4022 ; 0000-0002-5662-9911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39270269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Swain, Biswa R</creatorcontrib><creatorcontrib>Akif Qadeer, M</creatorcontrib><creatorcontrib>Dorrer, Christophe</creatorcontrib><creatorcontrib>Narayanan, Renuka Manjula</creatorcontrib><creatorcontrib>Rolland, Jannick P</creatorcontrib><creatorcontrib>Qiao, Jie</creatorcontrib><title>Wavefront sensing with optical differentiation powered by deep learning</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>We report the experimental demonstration of an optical differentiation wavefront sensor (ODWS) based on binary pixelated linear and nonlinear amplitude filtering in the far-field. We trained and tested a convolutional neural network that reconstructs the spatial phase map from nonlinear-filter-based ODWS data for which an analytic reconstruction algorithm is not available. It shows accurate zonal retrieval over different magnitudes of wavefronts and on randomly shaped wavefronts. This work paves the way for the implementation of simultaneously sensitive, high dynamic range, and high-resolution wavefront sensing.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Differentiation</subject><subject>Machine learning</subject><subject>Wave front sensors</subject><subject>Wave fronts</subject><issn>0146-9592</issn><issn>1539-4794</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0E1Lw0AQBuBFFK3Vg39AAl70kDr7nT1K0SoEelE8hk0yqylpEncTS_-9Ka0ePA0Dz7wMLyFXFGaUK3G_TGeSg5TmiEyo5CYW2ohjMgEqVGykYWfkPIQVACjN-Sk544ZpYMpMyOLdfqPzbdNHAZtQNR_Rpuo_o7brq8LWUVk5hx6bvrJ91TZR127GtYzybVQidlGN1jfj1QU5cbYOeHmYU_L29Pg6f47T5eJl_pDGBQPex4olVCQlM1Iy6dCgK4DlZWG4SQQ4a6XWjEvUFKwodS7BQaJcmSAowxTwKbnd53a-_Row9Nm6CgXWtW2wHULGKQjJtaZ6pDf_6KodfDN-t1OKCQ6MjepurwrfhuDRZZ2v1tZvMwrZrt1smWb7dkd7fUgc8jWWf_K3Tv4DzpRy8g</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Swain, Biswa R</creator><creator>Akif Qadeer, M</creator><creator>Dorrer, Christophe</creator><creator>Narayanan, Renuka Manjula</creator><creator>Rolland, Jannick P</creator><creator>Qiao, Jie</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0007-6597-5254</orcidid><orcidid>https://orcid.org/0000-0002-5374-5394</orcidid><orcidid>https://orcid.org/0000-0003-2747-4022</orcidid><orcidid>https://orcid.org/0000-0002-5662-9911</orcidid></search><sort><creationdate>20240915</creationdate><title>Wavefront sensing with optical differentiation powered by deep learning</title><author>Swain, Biswa R ; Akif Qadeer, M ; Dorrer, Christophe ; Narayanan, Renuka Manjula ; Rolland, Jannick P ; Qiao, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-628148d295525fe9efc02bdc939840faa577235e710a4d7b50f086fd8e0692603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Differentiation</topic><topic>Machine learning</topic><topic>Wave front sensors</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swain, Biswa R</creatorcontrib><creatorcontrib>Akif Qadeer, M</creatorcontrib><creatorcontrib>Dorrer, Christophe</creatorcontrib><creatorcontrib>Narayanan, Renuka Manjula</creatorcontrib><creatorcontrib>Rolland, Jannick P</creatorcontrib><creatorcontrib>Qiao, Jie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swain, Biswa R</au><au>Akif Qadeer, M</au><au>Dorrer, Christophe</au><au>Narayanan, Renuka Manjula</au><au>Rolland, Jannick P</au><au>Qiao, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavefront sensing with optical differentiation powered by deep learning</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2024-09-15</date><risdate>2024</risdate><volume>49</volume><issue>18</issue><spage>5216</spage><pages>5216-</pages><issn>0146-9592</issn><issn>1539-4794</issn><eissn>1539-4794</eissn><abstract>We report the experimental demonstration of an optical differentiation wavefront sensor (ODWS) based on binary pixelated linear and nonlinear amplitude filtering in the far-field. We trained and tested a convolutional neural network that reconstructs the spatial phase map from nonlinear-filter-based ODWS data for which an analytic reconstruction algorithm is not available. It shows accurate zonal retrieval over different magnitudes of wavefronts and on randomly shaped wavefronts. This work paves the way for the implementation of simultaneously sensitive, high dynamic range, and high-resolution wavefront sensing.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>39270269</pmid><doi>10.1364/OL.530559</doi><orcidid>https://orcid.org/0009-0007-6597-5254</orcidid><orcidid>https://orcid.org/0000-0002-5374-5394</orcidid><orcidid>https://orcid.org/0000-0003-2747-4022</orcidid><orcidid>https://orcid.org/0000-0002-5662-9911</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2024-09, Vol.49 (18), p.5216
issn 0146-9592
1539-4794
1539-4794
language eng
recordid cdi_proquest_miscellaneous_3104537717
source Optica Publishing Group Journals
subjects Algorithms
Artificial neural networks
Differentiation
Machine learning
Wave front sensors
Wave fronts
title Wavefront sensing with optical differentiation powered by deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavefront%20sensing%20with%20optical%20differentiation%20powered%20by%20deep%20learning&rft.jtitle=Optics%20letters&rft.au=Swain,%20Biswa%20R&rft.date=2024-09-15&rft.volume=49&rft.issue=18&rft.spage=5216&rft.pages=5216-&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.530559&rft_dat=%3Cproquest_cross%3E3104537717%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106243022&rft_id=info:pmid/39270269&rfr_iscdi=true