Wavefront sensing with optical differentiation powered by deep learning
We report the experimental demonstration of an optical differentiation wavefront sensor (ODWS) based on binary pixelated linear and nonlinear amplitude filtering in the far-field. We trained and tested a convolutional neural network that reconstructs the spatial phase map from nonlinear-filter-based...
Gespeichert in:
Veröffentlicht in: | Optics letters 2024-09, Vol.49 (18), p.5216 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | 5216 |
container_title | Optics letters |
container_volume | 49 |
creator | Swain, Biswa R Akif Qadeer, M Dorrer, Christophe Narayanan, Renuka Manjula Rolland, Jannick P Qiao, Jie |
description | We report the experimental demonstration of an optical differentiation wavefront sensor (ODWS) based on binary pixelated linear and nonlinear amplitude filtering in the far-field. We trained and tested a convolutional neural network that reconstructs the spatial phase map from nonlinear-filter-based ODWS data for which an analytic reconstruction algorithm is not available. It shows accurate zonal retrieval over different magnitudes of wavefronts and on randomly shaped wavefronts. This work paves the way for the implementation of simultaneously sensitive, high dynamic range, and high-resolution wavefront sensing. |
doi_str_mv | 10.1364/OL.530559 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3104537717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104537717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-628148d295525fe9efc02bdc939840faa577235e710a4d7b50f086fd8e0692603</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFK3Vg39AAl70kDr7nT1K0SoEelE8hk0yqylpEncTS_-9Ka0ePA0Dz7wMLyFXFGaUK3G_TGeSg5TmiEyo5CYW2ohjMgEqVGykYWfkPIQVACjN-Sk544ZpYMpMyOLdfqPzbdNHAZtQNR_Rpuo_o7brq8LWUVk5hx6bvrJ91TZR127GtYzybVQidlGN1jfj1QU5cbYOeHmYU_L29Pg6f47T5eJl_pDGBQPex4olVCQlM1Iy6dCgK4DlZWG4SQQ4a6XWjEvUFKwodS7BQaJcmSAowxTwKbnd53a-_Row9Nm6CgXWtW2wHULGKQjJtaZ6pDf_6KodfDN-t1OKCQ6MjepurwrfhuDRZZ2v1tZvMwrZrt1smWb7dkd7fUgc8jWWf_K3Tv4DzpRy8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106243022</pqid></control><display><type>article</type><title>Wavefront sensing with optical differentiation powered by deep learning</title><source>Optica Publishing Group Journals</source><creator>Swain, Biswa R ; Akif Qadeer, M ; Dorrer, Christophe ; Narayanan, Renuka Manjula ; Rolland, Jannick P ; Qiao, Jie</creator><creatorcontrib>Swain, Biswa R ; Akif Qadeer, M ; Dorrer, Christophe ; Narayanan, Renuka Manjula ; Rolland, Jannick P ; Qiao, Jie</creatorcontrib><description>We report the experimental demonstration of an optical differentiation wavefront sensor (ODWS) based on binary pixelated linear and nonlinear amplitude filtering in the far-field. We trained and tested a convolutional neural network that reconstructs the spatial phase map from nonlinear-filter-based ODWS data for which an analytic reconstruction algorithm is not available. It shows accurate zonal retrieval over different magnitudes of wavefronts and on randomly shaped wavefronts. This work paves the way for the implementation of simultaneously sensitive, high dynamic range, and high-resolution wavefront sensing.</description><identifier>ISSN: 0146-9592</identifier><identifier>ISSN: 1539-4794</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.530559</identifier><identifier>PMID: 39270269</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Algorithms ; Artificial neural networks ; Differentiation ; Machine learning ; Wave front sensors ; Wave fronts</subject><ispartof>Optics letters, 2024-09, Vol.49 (18), p.5216</ispartof><rights>Copyright Optical Society of America Sep 15, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c203t-628148d295525fe9efc02bdc939840faa577235e710a4d7b50f086fd8e0692603</cites><orcidid>0009-0007-6597-5254 ; 0000-0002-5374-5394 ; 0000-0003-2747-4022 ; 0000-0002-5662-9911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39270269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Swain, Biswa R</creatorcontrib><creatorcontrib>Akif Qadeer, M</creatorcontrib><creatorcontrib>Dorrer, Christophe</creatorcontrib><creatorcontrib>Narayanan, Renuka Manjula</creatorcontrib><creatorcontrib>Rolland, Jannick P</creatorcontrib><creatorcontrib>Qiao, Jie</creatorcontrib><title>Wavefront sensing with optical differentiation powered by deep learning</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>We report the experimental demonstration of an optical differentiation wavefront sensor (ODWS) based on binary pixelated linear and nonlinear amplitude filtering in the far-field. We trained and tested a convolutional neural network that reconstructs the spatial phase map from nonlinear-filter-based ODWS data for which an analytic reconstruction algorithm is not available. It shows accurate zonal retrieval over different magnitudes of wavefronts and on randomly shaped wavefronts. This work paves the way for the implementation of simultaneously sensitive, high dynamic range, and high-resolution wavefront sensing.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Differentiation</subject><subject>Machine learning</subject><subject>Wave front sensors</subject><subject>Wave fronts</subject><issn>0146-9592</issn><issn>1539-4794</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0E1Lw0AQBuBFFK3Vg39AAl70kDr7nT1K0SoEelE8hk0yqylpEncTS_-9Ka0ePA0Dz7wMLyFXFGaUK3G_TGeSg5TmiEyo5CYW2ohjMgEqVGykYWfkPIQVACjN-Sk544ZpYMpMyOLdfqPzbdNHAZtQNR_Rpuo_o7brq8LWUVk5hx6bvrJ91TZR127GtYzybVQidlGN1jfj1QU5cbYOeHmYU_L29Pg6f47T5eJl_pDGBQPex4olVCQlM1Iy6dCgK4DlZWG4SQQ4a6XWjEvUFKwodS7BQaJcmSAowxTwKbnd53a-_Row9Nm6CgXWtW2wHULGKQjJtaZ6pDf_6KodfDN-t1OKCQ6MjepurwrfhuDRZZ2v1tZvMwrZrt1smWb7dkd7fUgc8jWWf_K3Tv4DzpRy8g</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Swain, Biswa R</creator><creator>Akif Qadeer, M</creator><creator>Dorrer, Christophe</creator><creator>Narayanan, Renuka Manjula</creator><creator>Rolland, Jannick P</creator><creator>Qiao, Jie</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0007-6597-5254</orcidid><orcidid>https://orcid.org/0000-0002-5374-5394</orcidid><orcidid>https://orcid.org/0000-0003-2747-4022</orcidid><orcidid>https://orcid.org/0000-0002-5662-9911</orcidid></search><sort><creationdate>20240915</creationdate><title>Wavefront sensing with optical differentiation powered by deep learning</title><author>Swain, Biswa R ; Akif Qadeer, M ; Dorrer, Christophe ; Narayanan, Renuka Manjula ; Rolland, Jannick P ; Qiao, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-628148d295525fe9efc02bdc939840faa577235e710a4d7b50f086fd8e0692603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Differentiation</topic><topic>Machine learning</topic><topic>Wave front sensors</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swain, Biswa R</creatorcontrib><creatorcontrib>Akif Qadeer, M</creatorcontrib><creatorcontrib>Dorrer, Christophe</creatorcontrib><creatorcontrib>Narayanan, Renuka Manjula</creatorcontrib><creatorcontrib>Rolland, Jannick P</creatorcontrib><creatorcontrib>Qiao, Jie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swain, Biswa R</au><au>Akif Qadeer, M</au><au>Dorrer, Christophe</au><au>Narayanan, Renuka Manjula</au><au>Rolland, Jannick P</au><au>Qiao, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavefront sensing with optical differentiation powered by deep learning</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2024-09-15</date><risdate>2024</risdate><volume>49</volume><issue>18</issue><spage>5216</spage><pages>5216-</pages><issn>0146-9592</issn><issn>1539-4794</issn><eissn>1539-4794</eissn><abstract>We report the experimental demonstration of an optical differentiation wavefront sensor (ODWS) based on binary pixelated linear and nonlinear amplitude filtering in the far-field. We trained and tested a convolutional neural network that reconstructs the spatial phase map from nonlinear-filter-based ODWS data for which an analytic reconstruction algorithm is not available. It shows accurate zonal retrieval over different magnitudes of wavefronts and on randomly shaped wavefronts. This work paves the way for the implementation of simultaneously sensitive, high dynamic range, and high-resolution wavefront sensing.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>39270269</pmid><doi>10.1364/OL.530559</doi><orcidid>https://orcid.org/0009-0007-6597-5254</orcidid><orcidid>https://orcid.org/0000-0002-5374-5394</orcidid><orcidid>https://orcid.org/0000-0003-2747-4022</orcidid><orcidid>https://orcid.org/0000-0002-5662-9911</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-9592 |
ispartof | Optics letters, 2024-09, Vol.49 (18), p.5216 |
issn | 0146-9592 1539-4794 1539-4794 |
language | eng |
recordid | cdi_proquest_miscellaneous_3104537717 |
source | Optica Publishing Group Journals |
subjects | Algorithms Artificial neural networks Differentiation Machine learning Wave front sensors Wave fronts |
title | Wavefront sensing with optical differentiation powered by deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavefront%20sensing%20with%20optical%20differentiation%20powered%20by%20deep%20learning&rft.jtitle=Optics%20letters&rft.au=Swain,%20Biswa%20R&rft.date=2024-09-15&rft.volume=49&rft.issue=18&rft.spage=5216&rft.pages=5216-&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.530559&rft_dat=%3Cproquest_cross%3E3104537717%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106243022&rft_id=info:pmid/39270269&rfr_iscdi=true |