Wavefront sensing with optical differentiation powered by deep learning

We report the experimental demonstration of an optical differentiation wavefront sensor (ODWS) based on binary pixelated linear and nonlinear amplitude filtering in the far-field. We trained and tested a convolutional neural network that reconstructs the spatial phase map from nonlinear-filter-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2024-09, Vol.49 (18), p.5216
Hauptverfasser: Swain, Biswa R, Akif Qadeer, M, Dorrer, Christophe, Narayanan, Renuka Manjula, Rolland, Jannick P, Qiao, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the experimental demonstration of an optical differentiation wavefront sensor (ODWS) based on binary pixelated linear and nonlinear amplitude filtering in the far-field. We trained and tested a convolutional neural network that reconstructs the spatial phase map from nonlinear-filter-based ODWS data for which an analytic reconstruction algorithm is not available. It shows accurate zonal retrieval over different magnitudes of wavefronts and on randomly shaped wavefronts. This work paves the way for the implementation of simultaneously sensitive, high dynamic range, and high-resolution wavefront sensing.
ISSN:0146-9592
1539-4794
1539-4794
DOI:10.1364/OL.530559