Dual-State Red-Emitting Zinc-Based MOF Accompanied by Dual-Mode and Dual-State Detection: Color Tonality Visual Mode for the Detection of Tetracycline

Red-emitting metal–organic frameworks (MOFs) are still mostly based on the use of lanthanides or functionalization with red fluorophores. However, production of transition-metal-based MOFs with red-emitting is scarce. This work reports on the synthesis of a novel dual-state red-emitting Zn-based MOF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-09, Vol.16 (38), p.51376-51383
Hauptverfasser: Mohammed Ameen, Sameera Sh, Omer, Khalid M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Red-emitting metal–organic frameworks (MOFs) are still mostly based on the use of lanthanides or functionalization with red fluorophores. However, production of transition-metal-based MOFs with red-emitting is scarce. This work reports on the synthesis of a novel dual-state red-emitting Zn-based MOF (denoted as UoZ-7) with the capability to detect target molecules in dual state, in solution, and as solid on paper. UoZ-7 gives strong red emission when excited in the solution and in the solid state with 365 nm ultraviolet (UV) lamp irradiation. Coordination-induced emission is the mechanism for the red emission enhancement in the MOF as a restriction of intramolecular rotation occurred to the ligand within the framework structure. UoZ-7 was successfully used for tetracycline (TC) using dual-mode detection, fluorescence-based ratiometry, and color tonality, in the dual state, in solution, and on the paper. TC molecules adsorb on the red-emitting UoZ-7 surface, and a yellow-greenish color emerges due to aggregation-induced emission between TC and UoZ-7. Concurrently, the inner filter effect diminishes the red emission of UoZ-7. The dual-mode or dual-state detection platform provides a simple and reliable fast method for the detection of TC on-site in various environmental and biomedical applications. Moreover, red-emitting UoZ-7 will have further luminescence-based biomedical applications.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c13115