The threat from ozone to vegetation in Ireland
Ozone is the most damaging air pollutant to vegetation globally. Metrics of accumulated ozone above a concentration threshold (e.g. AOT40, ppb·h) have been widely used to assess ozone risk. However, there is growing consensus that accumulated Phytotoxic Ozone Dose (POD) above a receptor-specific cri...
Gespeichert in:
Veröffentlicht in: | Environmental research 2024-12, Vol.262 (Pt 2), p.119974, Article 119974 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ozone is the most damaging air pollutant to vegetation globally. Metrics of accumulated ozone above a concentration threshold (e.g. AOT40, ppb·h) have been widely used to assess ozone risk. However, there is growing consensus that accumulated Phytotoxic Ozone Dose (POD) above a receptor-specific critical stomatal flux threshold (y; nmol O3 m−2 s−1), expressed per unit of projected leaf area, provides a more reliable risk assessment, as it considers ozone entering the leaf (PODy, mmol m−2 leaf area). Few studies have assessed both concentration- and flux-based metrics using site-specific observations of ozone and meteorology. In this study we assessed the risk that ozone poses to five vegetation types across eight sites in Ireland during 2005–2021, using AOT40 and PODy risk metrics, and we predicted impacts using dose–response relationships. Long-term trends in both metrics were also assessed. The PODy critical level for vegetation protection was exceeded for all vegetation types, with exceedances most common at Atlantic coastal sites, and for tree species (beech POD1 15.7–25.7 mmol/m2 PLA). When PODy and AOT40 results were normalised based on their respective critical levels, predicted impacts were higher for PODy. There were significant increases in PODy for three vegetation types at rural sites during the study period, which also experienced increases in temperature and global solar radiation. The long-term trends were consistent with other European studies that show decreases in AOT40 and increases in PODy. While ozone concentrations in Ireland are relatively low (39–75 μg/m3 five-year average range), the humid climate and longer growing season may lead to elevated stomatal ozone uptake and thereby a risk to vegetation.
•Higher predicted risk to vegetation using PODy compared with AOT40 metric.•Atlantic coastal areas had higher risk compared with rural and suburban.•Significant PODy increases at rural sites for grasses and forbes since 2005.•PODy lower capture threshold reflects background O3 increases. |
---|---|
ISSN: | 0013-9351 1096-0953 1096-0953 |
DOI: | 10.1016/j.envres.2024.119974 |