DOR activation in mature oligodendrocytes regulates α-ketoglutarate metabolism leading to enhanced remyelination in aged mice

The decreased ability of mature oligodendrocytes to produce myelin negatively affects remyelination in demyelinating diseases and aging, but the underlying mechanisms are incompletely understood. In the present study, we identify a mature oligodendrocyte-enriched transcriptional coregulator diabetes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2024-11, Vol.27 (11), p.2073-2085
Hauptverfasser: Huang, Guojiao, Li, Zhidan, Liu, Xuezhao, Guan, Menglong, Zhou, Songlin, Zhong, Xiaowen, Zheng, Tao, Xin, Dazhuan, Gu, Xiaosong, Mu, Dezhi, Guo, Yingkun, Zhang, Lin, Zhang, Liguo, Lu, Q. Richard, He, Xuelian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The decreased ability of mature oligodendrocytes to produce myelin negatively affects remyelination in demyelinating diseases and aging, but the underlying mechanisms are incompletely understood. In the present study, we identify a mature oligodendrocyte-enriched transcriptional coregulator diabetes- and obesity-related gene (DOR)/tumor protein p53-inducible nuclear protein 2 (TP53INP2), downregulated in demyelinated lesions of donors with multiple sclerosis and in aged oligodendrocyte-lineage cells. Dor ablation in mice of both sexes results in defective myelinogenesis and remyelination. Genomic occupancy in oligodendrocytes and transcriptome profiling of the optic nerves of wild-type and Dor conditional knockout mice reveal that DOR and SOX10 co-occupy enhancers of critical myelinogenesis-associated genes including Prr18 , encoding an oligodendrocyte-enriched, proline-rich factor. We show that DOR targets regulatory elements of genes responsible for α-ketoglutarate biosynthesis in mature oligodendrocytes and is essential for α-ketoglutarate production and lipid biosynthesis. Supplementation with α-ketoglutarate restores oligodendrocyte-maturation defects in Dor -deficient adult mice and improves remyelination after lysolecithin-induced demyelination and cognitive function in 17-month-old wild-type mice. Our data suggest that activation of α-ketoglutarate metabolism in mature oligodendrocytes can promote myelin production during demyelination and aging. The mechanisms underlying the ability to remyelinate in aging and disease are unclear. Here, the authors show that DOR-mediated activation of α-ketoglutarate in mature oligodendrocytes can promote myelin production in mice during demyelination and aging.
ISSN:1097-6256
1546-1726
1546-1726
DOI:10.1038/s41593-024-01754-9