Sr2BiF7: A New Bismuth-Based Host Material for Lanthanide Ions Doping: Synthesis, Downshifting, and Upconversion Luminescence Properties for Multimode Anticounterfeiting
A new bismuth-based host material, i.e., Sr2BiF7, is explored in this work. Undoped and lanthanide ion-doped Sr2BiF7 nanomaterials are prepared using a simple coprecipitation technique at 120 °C. The undoped nanomaterials exhibit a blue color under 365 nm excitation. The downshifting and upconversio...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-09, Vol.16 (38), p.51028-51036 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new bismuth-based host material, i.e., Sr2BiF7, is explored in this work. Undoped and lanthanide ion-doped Sr2BiF7 nanomaterials are prepared using a simple coprecipitation technique at 120 °C. The undoped nanomaterials exhibit a blue color under 365 nm excitation. The downshifting and upconversion photoluminescent properties of Er and Yb codoped Sr2BiF7 nanomaterials are investigated. The optimum up-conversion luminescence is produced by nanomaterials doped with 5% Yb3+ and 0.2% Er3+. These nanomaterials show blue and magenta colors upon excitation at 365 and 395 nm wavelengths, respectively. Sr2BiF7 material doped with Er3+ shows green emission, while the codoped Er3+, Yb3+ nanomaterials exhibit an orange-red color under 980 nm light. A specific amount of polyvinyl chloride (PVC) is used for producing luminescent ink with these nanoparticles for multimode anticounterfeiting applications. The letters and patterns written with luminescent ink based on Er3+, Yb3+ doped nanomaterials show blue, magenta, and orange-red colors under 365, 395, and 980 nm light, respectively. These results establish that this material can be effectively used as a multimode photoluminescent covert tag to combat counterfeiting. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c08301 |