Screening of oxytetracycline-degrading strains in the intestine of the black soldier fly larvae and their degradation characteristics

The presence of excessive antibiotic residues poses a significant threat to human health and the environment. This study was designed to identify an effective oxytetracycline (OTC)-degrading strain through the screening of the intestine of black soldier fly larvae (BSFL). A strain designated “B2” wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2024-12, Vol.362, p.124929, Article 124929
Hauptverfasser: Chen, Qian, Xiong, Qiang, Zhou, Zhihao, Li, Xinfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The presence of excessive antibiotic residues poses a significant threat to human health and the environment. This study was designed to identify an effective oxytetracycline (OTC)-degrading strain through the screening of the intestine of black soldier fly larvae (BSFL). A strain designated “B2” was selected using a series of traditional microbial screening methods. It could be identified as Enterococcus faecalis by Gram staining and 16S rDNA sequencing, with a similarity of 99.93%. Its ability to degrade OTC was then assessed using high-performance liquid chromatography (HPLC). The degradation of the strain was characterized using a one-way test to assess the effects of the substrate concentration, inoculum amount, and initial pH on the degrading bacteria. The results indicate that strain B2 exhibited optimal OTC-degrading performance at a substrate concentration of 50 mg/L, with an inoculum amount of 6% and a pH value of 5.0. Specifically, strain B2 achieved degradation rates of 71.11%, 56.14%, and 45.03%. These findings demonstrate the effectiveness of strain B2 in degrading OTC, indicating its potential for use in environmental remediation efforts. [Display omitted] •Enterococcus faecalis screened from BSFL gut achieved efficient degradation of OTC.•Strains from the intestinal tract of black soldier fly were tolerant to OTC.•Bacterial resistance didn't mean bacteria could degrade drugs.•Gut microorganisms played an important role in the degradation of OTC by BSFL.
ISSN:0269-7491
1873-6424
1873-6424
DOI:10.1016/j.envpol.2024.124929