Absorption and transport mechanism of colloidal nanoparticles (CNPs) in lamb soup based on Caco-2 cell

Soup is an important presence in diet, but its absorption and transport mechanism by the human body remains unclear. In this study, Caco-2 intact cell and monolayer cell models were constructed to simulate small intestine absorption on colloidal nanoparticles (CNPs) isolated from lamb soup. The intr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food chemistry 2025-01, Vol.463 (Pt 1), p.141196, Article 141196
Hauptverfasser: Fu, Jianing, Li, Shaobo, Xu, Meizhen, Liu, Ling, Chen, Li, Zhang, Dequan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soup is an important presence in diet, but its absorption and transport mechanism by the human body remains unclear. In this study, Caco-2 intact cell and monolayer cell models were constructed to simulate small intestine absorption on colloidal nanoparticles (CNPs) isolated from lamb soup. The intracellular localization of CNPs was viewed by laser confocal microscopy (LSCM). CNPs uptake and release pathways were explored by differences in CNPs concentrations in 5 endocytosis inhibitor models and 4 exocytosis inhibitor models. Results indicated that CNPs endocytosis by Caco-2 cells was restrained by Nystatin and Cytochalasin D, with exocytosis being inhibited by Nocodazole and Monensin. Therefore, the major absorption pathways for CNPs were caveolin-dependent endocytosis, macropinocytosis and phagocytosis. The major transport pathways were microtubule-vesicle-mediated protein transport to the membrane and transportation between the Golgi apparatus and membrane. This study may provide theoretical support for the transport mechanism of soup products in the small intestine. •Laser confocal microscopy was used to visualize the soup products' CNPs transport in Caco-2 cell.•CNPs absorption pathways were caveolin-dependent, macropinocytosis and phagocytosis.•Microtubules and Golgi apparatus were essential in CNPs exocytosis.
ISSN:0308-8146
1873-7072
1873-7072
DOI:10.1016/j.foodchem.2024.141196