Spatial Confinement of Lithium Borohydride in Bimetallic CoNi-Doped Hollow Carbon Frameworks for Stable Hydrogen Storage

While lithium borohydride is one of the most promising hydrogen storage materials due to its ultrahigh hydrogen storage density, high thermodynamic stability, kinetic barriers, and poor reversibility, it is far from being used in practical applications. Herein, we prepare a cubic hollow carbon dodec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-09, Vol.16 (38), p.50717-50725
Hauptverfasser: Ding, Ying, Li, Chaoqun, Zhang, Xiaoyue, Chen, Wei, Yu, Xuebin, Xia, Guanglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While lithium borohydride is one of the most promising hydrogen storage materials due to its ultrahigh hydrogen storage density, high thermodynamic stability, kinetic barriers, and poor reversibility, it is far from being used in practical applications. Herein, we prepare a cubic hollow carbon dodecahedron uniformly modified with a bimetallic CoNi alloy (CoNi/NC) for preserving the stable catalytic effect of CoNi alloys toward reversible hydrogen storage. It is theoretically confirmed that bimetallic CoNi alloys effectively weaken the B–H bonds of LiBH4 by extending their average length to 1.33, 0.09 and 0.04 Å longer than that of LiBH4 and LiBH4 under metallic Co, respectively. More importantly, the alloying of Co with Ni avoids the reattachment of H from LiBH4 to the Co surface, which prevents LiBH4 from dehydrogenation for the formation of H2 on the Co surface, thus resulting in an ultralow hydrogen desorption energy of 0.1, 1.85 and 0.52 eV lower than that of LiBH4 and LiBH4 under metallic Co. Therefore, the onset and peak hydrogen desorption temperatures decrease to 130 and 355 °C, respectively, 170 and 97 °C lower than that of bulk LiBH4. More importantly, a reversible H2 capacity of 9.4 wt % is achieved even after 10 cycles.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c09512