Increases in amyloid-β42 slow cognitive and clinical decline in Alzheimer's disease trials

Positive effects of new anti-amyloid-β (Aβ) monoclonal antibodies in Alzheimer's disease (AD) have been attributed to brain amyloid reduction. However, most anti-Aβ antibodies also increase the CSF levels of the 42-amino acid isoform (Aβ42). We evaluated the associations of changes in CSF Aβ42...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain (London, England : 1878) England : 1878), 2024-10, Vol.147 (10), p.3513-3521
Hauptverfasser: Abanto, Jesus, Dwivedi, Alok K, Imbimbo, Bruno P, Espay, Alberto J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Positive effects of new anti-amyloid-β (Aβ) monoclonal antibodies in Alzheimer's disease (AD) have been attributed to brain amyloid reduction. However, most anti-Aβ antibodies also increase the CSF levels of the 42-amino acid isoform (Aβ42). We evaluated the associations of changes in CSF Aβ42 and brain Aβ-PET with cognitive and clinical end points in randomized trials of anti-Aβ drugs that lowered (β- and γ-secretase inhibitors) or increased CSF Aβ42 levels (anti-Aβ monoclonal antibodies) to test the hypothesis that post-treatment increases in CSF Aβ42 levels are independently associated with cognitive and clinical outcomes. From long-term (≥12 months) randomized placebo-controlled clinical trials of anti-Aβ drugs published until November 2023, we calculated the post-treatment versus baseline difference in ADAS-Cog (cognitive subscale of the Alzheimer's Disease Assessment Scale) and CDR-SB (Clinical Dementia Rate-Sum of Boxes) and z-standardized changes in CSF Aβ42 and Aβ-PET Centiloids (CL). We estimated the effect size [regression coefficients (RCs) and confidence intervals (CIs)] and the heterogeneity (I2) of the associations between AD biomarkers and cognitive and clinical end points using random-effects meta-regression models. We included 25 966 subjects with AD from 24 trials. In random-effects analysis, increases in CSF Aβ42 were associated with slower decline in ADAS-Cog (RC: -0.55; 95% CI: -0.89, -0.21, P = 0.003, I2 = 61.4%) and CDR-SB (RC: -0.16; 95% CI: -0.26, -0.06, P = 0.002, I2 = 34.5%). Similarly, decreases in Aβ-PET were associated with slower decline in ADAS-Cog (RC: 0.69; 95% CI: 0.48, 0.89, P < 0.001, I2 = 0%) and CDR-SB (RC: 0.26; 95% CI: 0.18, 0.33, P < 0.001, I2 = 0%). Sensitivity analyses yielded similar results. Higher CSF Aβ42 levels after exposure to anti-Aβ drugs are independently associated with slowing cognitive impairment and clinical decline. Increases in Aβ42 may represent a mechanism of potential benefit of anti-Aβ monoclonal antibodies in AD.
ISSN:0006-8950
1460-2156
1460-2156
DOI:10.1093/brain/awae216