TNFRSF10D expression as a potential biomarker for cisplatin-induced damage and ovarian tumor relapse prediction

Among gynecological malignancies, ovarian cancer (OC) presents the most challenging diagnostic scenario. Despite exhaustive efforts, up to 90 % of patients treated with taxane/platinum-based chemotherapy experience relapse, leading to poor survival rates. Identifying new molecular markers that can c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pathology, research and practice research and practice, 2024-11, Vol.263, p.155592, Article 155592
Hauptverfasser: Gonçales, Nikole Gontijo, Gonçalves, Bryan Ôrtero Perez, Silva, Luciana Maria, da Silva Filho, Agnaldo Lopes, da Conceição Braga, Letícia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among gynecological malignancies, ovarian cancer (OC) presents the most challenging diagnostic scenario. Despite exhaustive efforts, up to 90 % of patients treated with taxane/platinum-based chemotherapy experience relapse, leading to poor survival rates. Identifying new molecular markers that can characterize disease aggressiveness, chemoresistance, recurrence risk, and metastasis is crucial. This study aimed to assess the susceptibility of three ovarian tumor cell lines (TOV-21G, SKOV-3, and OV-90) to cisplatin and paclitaxel, and to investigate the influence of these treatments on the mRNA expression of TANK, RIPK1, NFKB1, TNFRSF10D, and TRAF2. Among the cell lines, SKOV-3 ovarian adenocarcinoma cells demonstrated the highest resistance to cisplatin treatment (0.125 mg/mL), followed by TOV-21G (0.076 mg/mL) and OV-90 cells (0.028 mg/mL). Regarding paclitaxel treatment, the SKOV-3 cell line exhibited the highest resistance (1.4 µg/mL), followed by OV-90 (1.3 µg/mL) and TOV-21G cells (0.9 µg/mL). Gene expression analysis after paclitaxel treatment remained unchanged; however, after cisplatin treatment, TNFRSF10D was observed to be upregulated nearly 100-fold in SKOV-3 compared to all other cell lines studied. SKOV-3 is described as cisplatin and tumor necrosis factor-resistant. Despite the defective signaling of the TNFRSF10D receptor for apoptosis, it can activate the NFKB transcription factor through non-canonical TRAIL signaling, contributing to a pro-inflammatory immune response. In light of this, damage associated with cisplatin increases TNFRSF10D expression and may promote cell survival through non-canonical NFKB pathway activation. This suggests that resistance to TRAIL-induced apoptosis in these cells could serve as a promising chemoresistance biomarker in OC. [Display omitted]
ISSN:0344-0338
1618-0631
1618-0631
DOI:10.1016/j.prp.2024.155592