Anticancer effects of simvastatin-loaded albumin nanoparticles on monolayer and spheroid models of breast cancer
Breast cancer is a prominent cause of death among women and is distinguished by a high occurrence of metastasis. From this perspective, apart from conventional therapies, several alternative approaches have been researched and explored in recent years, including the utilization of nano-albumin and s...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2024-11, Vol.734, p.150591, Article 150591 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Breast cancer is a prominent cause of death among women and is distinguished by a high occurrence of metastasis. From this perspective, apart from conventional therapies, several alternative approaches have been researched and explored in recent years, including the utilization of nano-albumin and statin medications like simvastatin. The objective of this study was to prepare albumin nanoparticles incorporating simvastatin by the self-assembly method and evaluate their impact on breast cancer metastasis and apoptosis. The data showed the prepared nanoparticles have a diameter of 185 ± 24nm and a drug loading capacity of 8.85 %. The findings exhibit improved release in a lysosomal-like environment and under acidic pH conditions. MTT data showed that nanoparticles do not exhibit a dose-dependent effect on cells. Additionally, the results from MTT, flow cytometry, and qPCR analyses demonstrated that nanoparticles have a greater inhibitory and lethal effect on MDA-MB-231 cells compared to normal simvastatin. And cause cells to accumulate in the G0/G1 phase, initiating apoptotic pathways by inhibiting cell cycle progression. Nanoparticles containing simvastatin can prevent cell invasion and migration in both monolayer and spheroid models, as compared to simvastatin alone, at microscopic levels and in gene expression. The obtained data clearly showed that, compared to simvastatin, nanoparticles containing simvastatin demonstrated significant efficacy in suppressing the growth, proliferation, invasion, and migration of cancer cells in monolayer (2D) and spheroid (3D) models.
•Albumin nanoparticles containing simvastatin prevent cell growth more effectively than the plain drug.•Invasion and migration of cells are inhibited by nanoparticles in both monolayer and spheroid cultures.•Nanoparticles increase both apoptosis and necrosis in cells.•Albumin nanoparticles containing simvastatin increase the Bax/Bcl-2 ratio more than simvastatin alone. |
---|---|
ISSN: | 0006-291X 1090-2104 1090-2104 |
DOI: | 10.1016/j.bbrc.2024.150591 |