Enhancing Anti-Cancer Immune Response by Acidosis-Sensitive Nanobody Display

One of the main challenges with many cancer immunotherapies is that biomarkers are needed for targeting. These biomarkers are often associated with tumors but are not specific to a particular tumor and can lead to damage in healthy tissues, resistance to treatment, or the need for customization for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of membrane biology 2024-12, Vol.257 (5-6), p.391-401
Hauptverfasser: Knepper, Leah E., Ankrom, Emily T., Thévenin, Damien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the main challenges with many cancer immunotherapies is that biomarkers are needed for targeting. These biomarkers are often associated with tumors but are not specific to a particular tumor and can lead to damage in healthy tissues, resistance to treatment, or the need for customization for different types of cancer due to variations in targets. A promising alternative approach is to target the acidic microenvironment found in most solid tumor types. This can be achieved using the pH (Low) Insertion Peptide (pHLIP), which inserts selectively into cell membranes under acidic conditions, sparing healthy tissues. pHLIP has shown potential for imaging, drug delivery, and surface display. For instance, we previously used pHLIP to display epitopes on the surfaces of cancer cells, enabling antibody-mediated immune cell recruitment and selective killing of cancer cells. In this study, we further explored this concept by directly fusing an anti-CD16 nanobody, which activates natural killer (NK) cells, to pHLIP, eliminating the need for antibody recruitment. Our results demonstrated the insertion of pH-sensitive agents into cancer cells, activation of the CD16 receptor on effector cells, and successful targeting and destruction of cancer cells by high-affinity CD16 + NK cells in two cancer cell lines. Graphical abstract
ISSN:0022-2631
1432-1424
1432-1424
DOI:10.1007/s00232-024-00322-3