Accuracy of a calibration method based on cone beam computed tomography and intraoral scanner data registration for robot-assisted implant placement: An in vitro study

Robotic systems have shown promise for implant placement because of their accuracy in identifying surgical positions. However, research on the accuracy of patient calibration methods based on cone beam computed tomography (CBCT) and intraoral scanner (IOS) data registration is lacking. The purpose o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of prosthetic dentistry 2024-12, Vol.132 (6), p.1309.e1-1309.e9
Hauptverfasser: Li, Yi, Lyu, Jizhe, Cao, Xunning, Zhou, Yin, Tan, Jianguo, Liu, Xiaoqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Robotic systems have shown promise for implant placement because of their accuracy in identifying surgical positions. However, research on the accuracy of patient calibration methods based on cone beam computed tomography (CBCT) and intraoral scanner (IOS) data registration is lacking. The purpose of this in vitro study was to develop a calibration method based on the registration of CBCT and IOS data of a robot-assisted system for implant placement, evaluate the accuracy of this calibration method, and explore the accuracy of robot-assisted surgery at different implant positions. Twenty standardized, polyurethane, partially edentulous maxillary typodonts were divided into 2 groups: one group used a calibration method based solely on CBCT data (CBCT group), and the other used a calibration method based on the registration of CBCT and IOS data (IOS group). Four implants were planned for each typodont in the right second premolar, left central incisor, left first premolar, and left second molar positions. The robot performed the osteotomies and implant placement step by step according to the preoperative plan. The operating software program automatically measured the deviation between the planned and actual implant position. Two-way analysis of variance (ANOVA) and the least significant difference (LSD) post hoc test (α=.05) were used to analyze differences between the test groups. The angular deviation and 3-dimensional deviations at implant platform and apex between the 2 calibration methods did not significantly differ among the 4 implant positions (P>.05). The horizontal and depth deviations at the implant platform and apex levels between the 2 calibration methods did not significantly differ among the 4 implant positions (P>.05). In the anterior region (left central incisor), the CBCT group showed higher horizontal deviation at both the implant platform and apex compared with the IOS group (P
ISSN:0022-3913
1097-6841
1097-6841
DOI:10.1016/j.prosdent.2024.08.009