Enhanced immune response with baculovirus-expressed BoHV-1 glycoprotein D in vaccine development
Bovine herpesvirus 1 (BoHV-1), a significant pathogen in the alpha-herpesvirus subfamily, primarily infects cattle and causes the upper respiratory disease known as infectious bovine rhinotracheitis (IBR). In silico studies evaluated the BoHV-1 D protein to be non-allergenic, non-toxic, and highly a...
Gespeichert in:
Veröffentlicht in: | The veterinary journal (1997) 2024-12, Vol.308, p.106228, Article 106228 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bovine herpesvirus 1 (BoHV-1), a significant pathogen in the alpha-herpesvirus subfamily, primarily infects cattle and causes the upper respiratory disease known as infectious bovine rhinotracheitis (IBR). In silico studies evaluated the BoHV-1 D protein to be non-allergenic, non-toxic, and highly antigenic, highlighting its potential as an antigen for vaccine development. Therefore, this study aimed to evaluate the efficacy of a subunit vaccine using the ectodomain of glycoprotein D (gD34–380) as an antigen. The truncated gD was successfully cloned and expressed in both Escherichia coli (E. coli, termed EgD) and baculovirus (termed BgD) systems, with expected molecular weights of 65 kDa and 50 kDa, respectively. For the vaccine formulation, the gD proteins were used either alone or in combination with in-house inactivated BoHV-1. Vaccination of mice and bovines showed that baculovirus-expressed gD34–380 accelerated the antibody response. Moreover, the BgD-vaccinated group also showed significantly higher neutralizing antibody levels against BoHV-1 than the control group (p |
---|---|
ISSN: | 1090-0233 1532-2971 1532-2971 |
DOI: | 10.1016/j.tvjl.2024.106228 |