Target-induced enzymatic cleavage cycle amplification reaction-gated organic photoelectrochemical transistor biosensor for rapid detection of okadaic acid

Okadaic acid (OA), a predominant toxic entity in Diarrhetic Shellfish Poisoning (DSP), carries substantial significance for both marine ecosystems and human well-being. The nascent organic photoelectrochemical transistor (OPECT) biosensor has emerged as a promising biometric methodology, poised to o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2025-01, Vol.267, p.116745, Article 116745
Hauptverfasser: Jiang, Tiantong, Ju, Peng, Bi, Fan, Chi, Jingtian, Wen, Siyu, Jiang, Fenghua, Chi, Zhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Okadaic acid (OA), a predominant toxic entity in Diarrhetic Shellfish Poisoning (DSP), carries substantial significance for both marine ecosystems and human well-being. The nascent organic photoelectrochemical transistor (OPECT) biosensor has emerged as a promising biometric methodology, poised to offer a fresh realm for the detection of marine biotoxins. In this work, a biosensor utilizing signal amplification based on Cd0.5Zn0.5S/ZnIn2S4 quantum dots (CZS/ZIS QDs) in OPECT was proposed for OA detection, where ZIS QDs were labeled on aptamer and a substantial quantity of QDs were generated via cyclic shearing facilitated through target-induced Exo I enzyme. Owing to the sensitizing influence of ZIS QDs on CZS, the photoelectric conversion efficiency was augmented, culminating in a notable anodic photocurrent upon exposure to light, thereby inducing a transformation in the channel state of the polymer poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) and consequently producing a remarkable modification in the channel current. The detection limit of the biosensor as low as 12.5 pM and a superior stability and specificity was confirmed, which also showed commendable outcomes in actual samples testing. Consequently, this study not only introduces a novel pathway for swift OA detection, but unveils a novel perspective for future expedited and convenient on-site detection of marine biotoxins. A biosensor utilizing signal amplification based on Cd0.5Zn0.5S/ZnIn2S4 quantum dots in OPECT was proposed for OA detection, where ZIS QDs were labeled on aptamer and a substantial quantity of QDs were generated via cyclic shearing facilitated through target-induced Exo I enzyme. [Display omitted]
ISSN:0956-5663
1873-4235
1873-4235
DOI:10.1016/j.bios.2024.116745