Realization of a Coherent and Efficient One-Dimensional Atom
A quantum emitter interacting with photons in a single optical-mode constitutes a one-dimensional atom. A coherent and efficiently coupled one-dimensional atom provides a large nonlinearity, enabling photonic quantum gates. Achieving a high coupling efficiency (β factor) and low dephasing is challen...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2024-08, Vol.133 (8), p.083602, Article 083602 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A quantum emitter interacting with photons in a single optical-mode constitutes a one-dimensional atom. A coherent and efficiently coupled one-dimensional atom provides a large nonlinearity, enabling photonic quantum gates. Achieving a high coupling efficiency (β factor) and low dephasing is challenging. Here, we use a semiconductor quantum dot in an open microcavity as an implementation of a one-dimensional atom. With a weak laser input, we achieve an extinction of 99.2% in transmission and a concomitant bunching in the photon statistics of g^{(2)}(0)=587, showcasing the reflection of the single-photon component and the transmission of the multi-photon components of the coherent input. The tunable nature of the microcavity allows β to be adjusted and gives control over the photon statistics-from strong bunching to antibunching-and the phase of the transmitted photons. We obtain excellent agreement between experiment and theory by going beyond the single-mode Jaynes-Cummings model. Our results pave the way towards the creation of exotic photonic states and two-photon phase gates. |
---|---|
ISSN: | 0031-9007 1079-7114 1079-7114 |
DOI: | 10.1103/PhysRevLett.133.083602 |