Electrostatically Engineered Tetraphenylethylene-Based Fluorescence Sensor for Protamine and Trypsin: Leveraging Aggregation-Induced Emission for Enhanced Sensitivity and Selectivity

The accurate detection of Protamine and Trypsin, two biomolecules with significant clinical and biological relevance, presents a substantial challenge because of their structural peculiarities, low abundance in physiological fluids, and potential interference from other substances. Protamine, a cati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2024-09, Vol.40 (37), p.19357-19369
Hauptverfasser: Upadhaya, Aditi H., Mirgane, Harshad A., Pandey, Shrishti P., Patil, Vrushali S., Bhosale, Sheshanath V., Singh, Prabhat K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accurate detection of Protamine and Trypsin, two biomolecules with significant clinical and biological relevance, presents a substantial challenge because of their structural peculiarities, low abundance in physiological fluids, and potential interference from other substances. Protamine, a cationic protein, is crucial for counteracting heparin overdoses, whereas Trypsin, a serine protease, is integral to protein digestion and enzyme activation. This study introduces a novel fluorescence sensor based on a (4-(1,2,2-tris­(4-phosphonophenyl)­vinyl)­phenyl)­phosphonic acid octasodium salt (TPPE), leveraging aggregation-induced emission (AIE) characteristics and electrostatic interactions to achieve selective and sensitive detection of these biomolecules. Through comprehensive optical characterization, including ground-state absorption, steady-state, and time-resolved emission spectroscopy, the interaction mechanisms and aggregation dynamics of TPPE with Protamine and Trypsin were elucidated. The sensor exhibits very high sensitivity (LOD: 1.45 nM for Protamine and 32 pM for Trypsin), selectivity, and stability, successfully operating in complex biological matrices, such as human serum and urine. Importantly, this sensor design underscores the synergy between the AIE phenomena and biomolecular interactions, offering a promising alternative for analytical applications in biomedical research and clinical diagnostics. The principles outlined herein open new avenues for the development of other AIE-based sensors, expanding the toolkit available for detecting a wide range of biomolecules using similar design strategies.
ISSN:0743-7463
1520-5827
1520-5827
DOI:10.1021/acs.langmuir.4c01315