Organic Two‐Photon‐Absorbing Photosensitizers Can Overcome Competing Light Absorption in Organic Photocatalysis

Conventional organic photocatalysis typically relies on ultraviolet and short‐wavelength visible photons as the energy source. However, this approach often suffers from competing light absorption by reactants, products, intermediates, and co‐catalysts, leading to reduced quantum efficiency and side...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2024-12, Vol.30 (69), p.e202402856-n/a
Hauptverfasser: Kumar Kundu, Bidyut, Bashar, Noorul, Srivastava, Prasenjit, Elles, Christopher G., Sun, Yujie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conventional organic photocatalysis typically relies on ultraviolet and short‐wavelength visible photons as the energy source. However, this approach often suffers from competing light absorption by reactants, products, intermediates, and co‐catalysts, leading to reduced quantum efficiency and side reactions. To address this issue, we developed novel organic two‐photon‐absorbing (TPA) photosensitizers capable of functioning under deep red and near‐infrared light irradiation. Three model reactions including cyclization, Sonogashira Csp2−Csp cross‐coupling, and Csp2−N cross‐coupling reactions were selected to compare the performance of the new photosensitizers under both blue (427 nm) and deep red (660 nm) light irradiation. The obtained results unambiguously prove that for reactions involving blue light‐absorbing reactants, products, and/or co‐catalysts, deep red light source resulted in better performance than blue light when utilizing our TPA photosensitizers. This work highlights the potential of our metal‐free TPA photosensitizers as a sustainable and effective solution to mitigate the competing light absorption issue in photocatalysis, not only expanding the scope of organic photocatalysts but also reducing reliance on expensive Ru/Ir/Os‐based photosensitizers. To avoid the competing light absorption in organic photocatalysis, which typically occurs in the UV/vis region, herein we report a novel two‐photon‐absorbing photocatalyst dBAP‐OMe that shows excellent photocatalytic performance under deep red light irradiation.
ISSN:0947-6539
1521-3765
1521-3765
DOI:10.1002/chem.202402856